相關(guān)習題
 0  266136  266144  266150  266154  266160  266162  266166  266172  266174  266180  266186  266190  266192  266196  266202  266204  266210  266214  266216  266220  266222  266226  266228  266230  266231  266232  266234  266235  266236  266238  266240  266244  266246  266250  266252  266256  266262  266264  266270  266274  266276  266280  266286  266292  266294  266300  266304  266306  266312  266316  266322  266330  266669 

科目: 來源: 題型:

【題目】設函數(shù).

(1) 討論的單調(diào)性;

(2) ,當時, ,求的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù) (是常數(shù)),

(1)求函數(shù)的單調(diào)區(qū)間;

(2)當時,函數(shù)有零點,求的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù)有兩個零點.

1)求實數(shù)的取值范圍;

2)設、的兩個零點,證明:.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖所示,四棱錐的側(cè)面底面,底面是直角梯形,且, , 中點.

(1)求證: 平面;

(2)若,求直線與平面所成角的大小.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知橢圓和直線 ,橢圓的離心率,坐標原點到直線的距離為.

(Ⅰ)求橢圓的方程;

(Ⅱ)已知定點,若直線過點且與橢圓相交于兩點,試判斷是否存在直線,使以為直徑的圓過點?若存在,求出直線的方程;若不存在,請說明理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】若實數(shù)a,b,c,d滿足︱b+a2-3lna+c-d+22=0,則(a-c2+b-d2的最小值為 .

查看答案和解析>>

科目: 來源: 題型:

【題目】已知焦點在x軸上的橢圓E經(jīng)過點,且焦距為.

1)求橢圓E的標準方程;

2)直線與橢圓E交于不同的兩點A、B,線段AB的垂直平分線交y軸于點M,若,求m的值.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知四棱錐的底面是直角梯形,,的中點,.

(1)證明:平面平面;

(2)若與平面所成的角為,求二面角的余弦值.

查看答案和解析>>

科目: 來源: 題型:

【題目】隨著移動互聯(lián)網(wǎng)的快速發(fā)展,基于互聯(lián)網(wǎng)的共享單車應運而生.某市場研究人員為了了解共享單車運營公司的經(jīng)營狀況,對該公司最近六個月內(nèi)的市場占有率進行了統(tǒng)計,并繪制了相應的折線圖.

(Ⅰ)由折線圖得,可用線性回歸模型擬合月度市場占有率與月份代碼之間的關(guān)系.求關(guān)于的線性回歸方程,并預測公司2017年5月份(即時)的市場占有率;

(Ⅱ)為進一步擴大市場,公司擬再采購一批單車.現(xiàn)有采購成本分別為1000元/輛和1200元/輛的兩款車型可供選擇,按規(guī)定每輛單車最多使用4年,但由于多種原因(如騎行頻率等)會導致車輛報廢年限各不形同,考慮到公司運營的經(jīng)濟效益,該公司決定先對兩款車型的單車各100輛進行科學模擬測試,得到兩款單車使用壽命頻數(shù)表見上表.

經(jīng)測算,平均每輛單車每年可以帶來收入500元,不考慮除采購成本之外的其他成本,假設每輛單車的使用壽命都是整年,且以頻率作為每輛單車使用壽命的概率,如果你是公司的負責人,以每輛單車產(chǎn)生利潤的期望值為決策依據(jù),你會選擇采購哪款車型?

(參考公式:回歸直線方程為,其中

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù),.

(1)設函數(shù),試討論函數(shù)零點的個數(shù);

(2)若,,求證:

查看答案和解析>>

同步練習冊答案