【題目】已知焦點在x軸上的橢圓E經過點,且焦距為.
(1)求橢圓E的標準方程;
(2)直線與橢圓E交于不同的兩點A、B,線段AB的垂直平分線交y軸于點M,若,求m的值.
科目:高中數(shù)學 來源: 題型:
【題目】空氣質量指數(shù)AQI是反映空氣質量狀況的指數(shù),AQI指數(shù)值越小,表明空氣質量越好,其對應關系如下表:
AQI指數(shù)值 | 0~50 | 51~100 | 101~150 | 151~200 | 201~300 | >300 |
空氣質量 | 優(yōu) | 良 | 輕度污染 | 中度污染 | 重度污染 | 嚴重污染 |
下圖是某市10月1日—20日AQI指數(shù)變化趨勢:
下列敘述錯誤的是
A. 這20天中AQI指數(shù)值的中位數(shù)略高于100
B. 這20天中的中度污染及以上的天數(shù)占
C. 該市10月的前半個月的空氣質量越來越好
D. 總體來說,該市10月上旬的空氣質量比中旬的空氣質量好
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在斜三棱柱ABC﹣A1B1C1中,點O、E分別是A1C1、A1B1的中點,A1C與AC1交于點F,AO⊥平面A1B1C1.已知∠BCA=90°,AA1=AC=BC=2.
(1)求證:EF∥平面BB1C1C;
(2)求A1C1與平面AA1B1所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在多面體中,四邊形是菱形,,四邊形是直角梯形,,,.
(Ⅰ)證明:平面.
(Ⅱ)若平面平面,為的中點,求平面與平面所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在極坐標系中,直線的極坐標方程為.以極點為原點,極軸為軸的正半軸建立平面直角坐標系,曲線的參數(shù)方程為,(為參數(shù)).
(1)請寫出直線的參數(shù)方程;
(2)求直線與曲線交點的直角坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù) (是常數(shù)),
(1)求函數(shù)的單調區(qū)間;
(2)當時,函數(shù)有零點,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,曲線的參數(shù)方程為(為參數(shù)).在以坐標原點為極點,軸的正半軸為極軸的極坐標系中,直線的極坐標方程為.
(1)求曲線的普通方程及直線的直角坐標方程;
(2)求曲線上的點到直線的距離的最大值與最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2019年11月15日,我市召開全市創(chuàng)建全國文明城市動員大會,會議向全市人民發(fā)出動員令,吹響了集結號.為了了解哪些人更關注此活動,某機構隨機抽取了年齡在15~75歲之間的100人進行調查,并按年齡繪制的頻率分布直方圖如圖所示,其分組區(qū)間為:,,,,,.把年齡落在和內的人分別稱為“青少年人”和“中老年人”,經統(tǒng)計“青少年人”與“中老年人”的人數(shù)之比為.
(1)求圖中的值,若以每個小區(qū)間的中點值代替該區(qū)間的平均值,估計這100人年齡的平均值;
(2)若“青少年人”中有15人關注此活動,根據(jù)已知條件完成題中的列聯(lián)表,根據(jù)此統(tǒng)計結果,問能否有的把握認為“中老年人”比“青少年人”更加關注此活動?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】根據(jù)氣象部門預報,在距離某個碼頭A南偏東45°方向的600km處的熱帶風暴中心B正以30km/h的速度向正北方向移動,距離風暴中心450km以內的地區(qū)都將受到影響,從現(xiàn)在起經過___小時后該碼頭A將受到熱帶風暴的影響(精確到0.01).
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com