科目: 來源: 題型:
【題目】年初新冠病毒疫情爆發(fā),全國范圍開展了“停課不停學(xué)”的線上教學(xué)活動.哈六中數(shù)學(xué)組積極研討網(wǎng)上教學(xué)策略:先采取甲、乙兩套方案教學(xué),并對分別采取兩套方案教學(xué)的班級的次線上測試成績進(jìn)行統(tǒng)計如圖所示:
(1)請?zhí)顚懴卤恚ㄒ髮懗鲇嬎氵^程)
平均數(shù) | 方差 | |
甲 | ||
乙 |
(2)從下列三個不同的角度對這次方案選擇的結(jié)果進(jìn)行
①從平均數(shù)和方差相結(jié)合看(分析哪種方案的成績更好);
②從折線圖上兩種方案的走勢看(分析哪種方案更有潛力).
查看答案和解析>>
科目: 來源: 題型:
【題目】蜂巢是由工蜂分泌蜂蠟建成的.從正面看,蜂巢口是由許多正六邊形的中空柱狀體連接而成,中空柱狀體的底部是由三個全等的菱形面構(gòu)成.如圖,在正六棱柱的三個頂點處分別用平面,平面,平面截掉三個相等的三棱錐,,,平面,平面,平面交于點,就形成了蜂巢的結(jié)構(gòu),如下圖(4)所示,
瑞士數(shù)學(xué)家克尼格利用微積分的方法證明了蜂巢的這種結(jié)構(gòu)是在相同容積下所用材料最省的,英國數(shù)學(xué)家麥克勞林通過計算得到菱形的一個內(nèi)角為,即.以下三個結(jié)論①;② ;③四點共面,正確命題的個數(shù)為______個;若,,,則此蜂巢的表面積為_______.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,有一種賽車跑道類似“梨形”曲線,由圓弧和線段AB,CD四部分組成,在極坐標(biāo)系Ox中,A(2,),B(1,),C(1,),D(2,),弧所在圓的圓心分別是(0,0),(2,0),曲線M1是弧,曲線M2是弧.
(1)分別寫出M1,M2的極坐標(biāo)方程:
(2)點E,F位于曲線M2上,且,求△EOF面積的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)f(x)=2cos2x+ax2.
(1)當(dāng)a=1時,求f(x)的導(dǎo)函數(shù)在上的零點個數(shù);
(2)若關(guān)于x的不等式2cos(2sinx)+a2x2≤af(x)在(﹣∞,+∞)上恒成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】某市為提升中學(xué)生的數(shù)學(xué)素養(yǎng),激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,舉辦了一次“數(shù)學(xué)文化知識大賽”,分預(yù)賽和復(fù)賽兩個環(huán)節(jié).已知共有8000名學(xué)生參加了預(yù)賽,現(xiàn)從參加預(yù)賽的全體學(xué)生中隨機地抽取100人的預(yù)賽成績作為樣本,得到如下頻率分布直方圖.
(1)規(guī)定預(yù)賽成績不低于80分為優(yōu)良,若從上述樣本中預(yù)賽成績不低于60分的學(xué)生中隨機地抽取2人,求恰有1人預(yù)賽成績優(yōu)良的概率;
(2)由頻率分布直方圖可認(rèn)為該市全體參加預(yù)賽學(xué)生的預(yù)賽成績Z服從正態(tài)分布N(μ,σ2),其中μ可近似為樣本中的100名學(xué)生預(yù)賽成績的平均值(同一組數(shù)據(jù)用該組區(qū)間的中點值代替),且σ2=362.利用該正態(tài)分布,估計全市參加預(yù)賽的全體學(xué)生中預(yù)賽成績不低于91分的人數(shù);
(3)預(yù)賽成績不低于91分的學(xué)生將參加復(fù)賽,復(fù)賽規(guī)則如下:①每人的復(fù)賽初始分均為100分;②參賽學(xué)生可在開始答題前自行決定答題數(shù)量n,每一題都需要“花”掉(即減去)一定分?jǐn)?shù)來獲取答題資格,規(guī)定答第k題時“花”掉的分?jǐn)?shù)為0.1k(k∈(1,2n));③每答對一題加1.5分,答錯既不加分也不減分;④答完n題后參賽學(xué)生的最終分?jǐn)?shù)即為復(fù)賽成績.已知學(xué)生甲答對每道題的概率均為0.7,且每題答對與否都相互獨立.若學(xué)生甲期望獲得最佳的復(fù)賽成績,則他的答題數(shù)量n應(yīng)為多少?
(參考數(shù)據(jù):;若Z~N(μ,σ2),則P(μ﹣σ<Z<μ+σ)≈0.6827,P(μ﹣2σ<Z<μ+2σ)≈0.9545,P(μ﹣3σ<Z<μ+3σ)≈0.9973.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓C:的短軸長為2,離心率為,左頂點為A,過點A的直線l與C交于另一個點M,且與直線x=t交于點N.
(1)求橢圓C的方程;
(2)是否存在實數(shù)t,使得為定值?若存在,求實數(shù)t的值;若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知三棱柱ABC﹣A1B1C1的所有棱長都相等,平面BB1C1C⊥平面ABC,BC1=C1C.
(1)求證:A1B⊥平面AB1C1;
(2)求二面角A1﹣AC1﹣B1的余弦值.
查看答案和解析>>
科目: 來源: 題型:
【題目】函數(shù)f(x)=(sinx+cosx)2cos(2x+π).
(1)求函數(shù)f(x)的最小正周期;
(2)已知△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,若,且a=2,求△ABC的面積.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知點F1、F2分別為雙曲線C:(a>0,b>0)的左、右焦點,點M(x0,y0)(x0<0)為C的漸近線與圓x2+y2=a2的一個交點,O為坐標(biāo)原點,若直線F1M與C的右支交于點N,且|MN|=|NF2|+|OF2|,則雙曲線C的離心率為_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com