【題目】蜂巢是由工蜂分泌蜂蠟建成的.從正面看,蜂巢口是由許多正六邊形的中空柱狀體連接而成,中空柱狀體的底部是由三個(gè)全等的菱形面構(gòu)成.如圖,在正六棱柱的三個(gè)頂點(diǎn)處分別用平面,平面,平面截掉三個(gè)相等的三棱錐,,,平面,平面,平面交于點(diǎn),就形成了蜂巢的結(jié)構(gòu),如下圖(4)所示,
瑞士數(shù)學(xué)家克尼格利用微積分的方法證明了蜂巢的這種結(jié)構(gòu)是在相同容積下所用材料最省的,英國(guó)數(shù)學(xué)家麥克勞林通過(guò)計(jì)算得到菱形的一個(gè)內(nèi)角為,即.以下三個(gè)結(jié)論①;② ;③四點(diǎn)共面,正確命題的個(gè)數(shù)為______個(gè);若,,,則此蜂巢的表面積為_______.
【答案】2
【解析】
根據(jù)正六棱柱底面正六邊形的性質(zhì)可判斷出邊之間的大小關(guān)系及平行關(guān)系;根據(jù)已知條件求出表面各邊的長(zhǎng)度,蜂巢的表面積即由6個(gè)梯形和3個(gè)菱形組成,分別求出梯形和菱形的面積代入即可.
由題可得:,
六邊形是正六邊形,
所以,即有,
所以①錯(cuò)誤;
用平面,平面,平面截掉
三個(gè)相等的三棱錐,,,
所以平面與底面平行,
所以有:、、,
在正六邊形中,
所以;②正確;
因?yàn)?/span>,
所以,即四點(diǎn)共面,③正確;
因此正確個(gè)數(shù)有2個(gè);
連接,,如圖:
由題意可得:且,
因?yàn)?/span>,,
所以,
即有,
四邊形為菱形,
所以在中可求出,
,
所以,
,
所以蜂巢的表面積為
故答案為:
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】國(guó)家統(tǒng)計(jì)局進(jìn)行第四次經(jīng)濟(jì)普查,某調(diào)查機(jī)構(gòu)從15個(gè)發(fā)達(dá)地區(qū),10個(gè)欠發(fā)達(dá)地區(qū),5個(gè)貧困地區(qū)中選取6個(gè)作為國(guó)家綜合試點(diǎn)地區(qū),然后再逐級(jí)確定普查區(qū)域,直到基層的普查小區(qū).普查過(guò)程中首先要進(jìn)行宣傳培訓(xùn),然后確定對(duì)象,最后入戶登記,由于種種情況可能會(huì)導(dǎo)致入戶登記不夠順利,這為正式普查提供了寶貴的試點(diǎn)經(jīng)驗(yàn),在某普查小區(qū),共有50家企事業(yè)單位,150家個(gè)體經(jīng)營(yíng)戶,普查情況如下表所示:
普查對(duì)象類(lèi)別 | 順利 | 不順利 | 合計(jì) |
企事業(yè)單位 | 40 | 10 | 50 |
個(gè)體經(jīng)營(yíng)戶 | 90 | 60 | 150 |
合計(jì) | 130 | 70 | 200 |
(1)寫(xiě)出選擇6個(gè)國(guó)家綜合試點(diǎn)地區(qū)采用的抽樣方法;
(2)根據(jù)列聯(lián)表判斷是否有97.5%的把握認(rèn)為“此普查小區(qū)的入戶登記是否順利與普查對(duì)象的類(lèi)別有關(guān)”,分析造成這個(gè)結(jié)果的原因并給出合理化建議.
附:參考公式: ,其中
參考數(shù)據(jù):
| 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 |
| 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知為實(shí)數(shù),函數(shù).
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)求函數(shù)在上的最小值;
(Ⅲ)若,求使方程有唯一解的的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列函數(shù)中為奇函數(shù)的是( )
A.y=x2﹣2xB.y=x2cosxC.y=2x+2﹣xD.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知三棱柱ABC﹣A1B1C1的所有棱長(zhǎng)都相等,平面BB1C1C⊥平面ABC,BC1=C1C.
(1)求證:A1B⊥平面AB1C1;
(2)求二面角A1﹣AC1﹣B1的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平行四邊形ABCD中,沿其對(duì)角線BD將折起至,使得點(diǎn)在平面ABCD內(nèi)的射影恰為點(diǎn)B,點(diǎn)E為的中點(diǎn).
(Ⅰ)求證:平面BDE;
(Ⅱ)若,求與平面BDE所成的角.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列結(jié)論中正確的個(gè)數(shù)為( )
(1)是直線和直線垂直的充要條件;
(2)在線性回歸方程中,相關(guān)系數(shù)越大,變量間的相關(guān)性越強(qiáng);
(3)已知隨機(jī)變量,若,則
(4)若命題,,則,
A.1B.2C.3D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓過(guò)點(diǎn),分別為橢圓C的左、右焦點(diǎn)且.
(1)求橢圓C的方程;
(2)過(guò)P點(diǎn)的直線與橢圓C有且只有一個(gè)公共點(diǎn),直線平行于OP(O為原點(diǎn)),且與橢圓C交于兩點(diǎn)A、B,與直線交于點(diǎn)M(M介于A、B兩點(diǎn)之間).
(i)當(dāng)面積最大時(shí),求的方程;
(ii)求證:,并判斷,的斜率是否可以按某種順序構(gòu)成等比數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在全面抗擊新冠肺炎疫情這一特殊時(shí)期,我市教育局提出“停課不停學(xué)”的口號(hào),鼓勵(lì)學(xué)生線上學(xué)習(xí).某校數(shù)學(xué)教師為了調(diào)查高三學(xué)生數(shù)學(xué)成績(jī)與線上學(xué)習(xí)時(shí)間之間的相關(guān)關(guān)系,對(duì)高三年級(jí)隨機(jī)選取45名學(xué)生進(jìn)行跟蹤問(wèn)卷,其中每周線上學(xué)習(xí)數(shù)學(xué)時(shí)間不少于5小時(shí)的有19人,余下的人中,在檢測(cè)考試中數(shù)學(xué)平均成績(jī)不足120分的占,統(tǒng)計(jì)成績(jī)后得到如下列聯(lián)表:
分?jǐn)?shù)不少于120分 | 分?jǐn)?shù)不足120分 | 合計(jì) | |
線上學(xué)習(xí)時(shí)間不少于5小時(shí) | 4 | 19 | |
線上學(xué)習(xí)時(shí)間不足5小時(shí) | |||
合計(jì) | 45 |
(1)請(qǐng)完成上面列聯(lián)表;并判斷是否有99%的把握認(rèn)為“高三學(xué)生的數(shù)學(xué)成績(jī)與學(xué)生線上學(xué)習(xí)時(shí)間有關(guān)”;
(2)在上述樣本中從分?jǐn)?shù)不少于120分的學(xué)生中,按照分層抽樣的方法,抽到線上學(xué)習(xí)時(shí)間不少于5小時(shí)和線上學(xué)習(xí)時(shí)間不足5小時(shí)的學(xué)生共5名,若在這5名學(xué)生中隨機(jī)抽取2人,求至少1人每周線上學(xué)習(xí)時(shí)間不足5小時(shí)的概率.
(下面的臨界值表供參考)
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(參考公式 其中)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com