【題目】如圖,在四棱錐中,側棱底面,底面為長方形,且,是的中點,作交于點.
(1)證明:平面;
(2)若三棱錐的體積為,求二面角的正弦值.
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中(為坐標原點),已知兩點,,且三角形的內切圓為圓,從圓外一點向圓引切線,為切點。
(1)求圓的標準方程.
(2)已知點,且,試判斷點是否總在某一定直線上,若是,求出直線的方程;若不是,請說明理由.
(3)已知點在圓上運動,求的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓: 的右焦點為, 為直線上一點,線段交于點,若,則__________.
【答案】
【解析】
由條件橢圓: ∴
橢圓的右焦點為F,可知F(1,0),
設點A的坐標為(2,m),則=(1,m),
∴,
∴點B的坐標為,
∵點B在橢圓C上,
∴,解得:m=1,
∴點A的坐標為(2,1),.
答案為: .
【題型】填空題
【結束】
16
【題目】四棱錐中, 面, 是平行四邊形, , ,點為棱的中點,點在棱上,且,平面與交于點,則異面直線與所成角的正切值為__________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(改編)已知正數(shù)數(shù)列的前項和為,且滿足;在數(shù)列中,
(1)求數(shù)列和的通項公式;
(2)設,數(shù)列的前項和為. 若對任意,存在實數(shù),使恒成立,求的最小值;
(3)記數(shù)列的前項和為,證明:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓C: (>b>0)的左、右頂點分別為A1、A2,上、下頂點分別為B2、B1,O為坐標原點,四邊形A1B1A2B2的面積為4,且該四邊形內切圓的方程為.
(Ⅰ)求橢圓C的方程;
(Ⅱ)若M、N是橢圓C上的兩個不同的動點,直線OM、ON的斜率之積等于,試探求△OMN的面積是否為定值,并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知
(1)證明函數(shù)f ( x )的圖象關于軸對稱;
(2)判斷在上的單調性,并用定義加以證明;
(3)當x∈[1,2]時函數(shù)f (x )的最大值為,求此時a的值。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】學校高一數(shù)學考試后,對分(含分)以上的成績進行統(tǒng)計,其頻率分布直方圖如圖所示,分數(shù)在分的學生人數(shù)為人,
(1)求這所學校分數(shù)在分的學生人數(shù);
(2)請根據(jù)頻率發(fā)布直方圖估計這所學校學生分數(shù)在分的學生的平均成績;
(3)為進“步了解學生的學習情況,按分層抽樣方法從分數(shù)在分和分的學生中抽出人,從抽出的學生中選出人分別做問卷和問卷,求分的學生做問卷,分的學生做問卷的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com