【題目】已知橢圓C: (>b>0)的左、右頂點(diǎn)分別為A1、A2,上、下頂點(diǎn)分別為B2、B1,O為坐標(biāo)原點(diǎn),四邊形A1B1A2B2的面積為4,且該四邊形內(nèi)切圓的方程為.
(Ⅰ)求橢圓C的方程;
(Ⅱ)若M、N是橢圓C上的兩個(gè)不同的動(dòng)點(diǎn),直線OM、ON的斜率之積等于,試探求△OMN的面積是否為定值,并說(shuō)明理由.
【答案】(Ⅰ);(Ⅱ)見(jiàn)解析.
【解析】試題分析:(Ⅰ)先利用四邊形的面積求得,再利用直線和圓相切進(jìn)行求解;(Ⅱ)設(shè)出直線方程,聯(lián)立直線和橢圓的方程,得到關(guān)于的一元二次方程,利用根與系數(shù)的關(guān)系、直線的斜率公式和三角形的面積公式進(jìn)行求解.
試題解析:(Ⅰ)∵四邊形A1B1A2B2的面積為4,又可知四邊形A1B1A2B2為菱形,
∴,即ab=2①
由題意可得直線A2B2方程為:,即bx+ay﹣ab=0,
∵四邊形A1B1A2B2內(nèi)切圓方程為,
∴圓心O到直線A2B2的距離為,即②
由①②解得:a=2,b=1,∴橢圓C的方程為:
(Ⅱ)若直線MN的斜率存在,設(shè)直線MN的方程為y=kx+m,M(x1,y1),N(x2,y2),
由得:(1+4k2)x2+8mkx+4(m2﹣1)=0∵直線l與橢圓C相交于M,N兩個(gè)不同的點(diǎn),
∴△=64m2k2﹣16(1+4k2)(m2﹣1)>0得:1+4k2﹣m2>0③
由韋達(dá)定理:
∵直線OM,ON的斜率之積等于,
∴,
∴,
∴2m2=4k2+1滿足③…(9分)
∴,
又O到直線MN的距離為,,
所以△OMN的面積
若直線MN的斜率不存在,M,N關(guān)于x軸對(duì)稱
設(shè)M(x1,y1),N(x1,﹣y1),則,,
又∵M在橢圓上,,∴,
所以△OMN的面積S===1.
綜上可知,△OMN的面積為定值1.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列的前項(xiàng)和為,點(diǎn)在直線上.數(shù)列滿足且,前9項(xiàng)和為153.
(1)求數(shù)列、的通項(xiàng)公式;
(2)設(shè),數(shù)列的前項(xiàng)和為,求及使不等式對(duì)一切都成立的最小正整數(shù)的值;
(3)設(shè),問(wèn)是否存在,使得成立?若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,底面是平行四邊形, ,側(cè)面底面, , , , 分別為, 的中點(diǎn),點(diǎn)在線段上.
(1)求證: 平面;
(2)若直線與平面所成的角和直線與平面所成的角相等,求的值.
【答案】(1)證明見(jiàn)解析;(2) .
【解析】試題分析:
(Ⅰ)在平行四邊形中,由條件可得,進(jìn)而可得。由側(cè)面底面,得底面,故得,所以可證得平面.(Ⅱ)先證明平面平面,由面面平行的性質(zhì)可得平面.(Ⅲ)建立空間直角坐標(biāo)系,通過(guò)求出平面的法向量,根據(jù)線面角的向量公式可得。
試題解析:
(Ⅰ)證明:在平行四邊形中,
∵, , ,
∴,
∴,
∵, 分別為, 的中點(diǎn),
∴,
∴,
∵側(cè)面底面,且,
∴底面,
又底面,
∴,
又, 平面, 平面,
∴平面.
(Ⅱ)證明:∵為的中點(diǎn), 為的中點(diǎn),
∴,
又平面, 平面,
∴平面,
同理平面,
又, 平面, 平面,
∴平面平面,
又平面,
∴平面.
(Ⅲ)解:由底面, ,可得, , 兩兩垂直,
建立如圖空間直角坐標(biāo)系,
則, , , , , ,
所以, , ,
設(shè),則,
∴, ,
易得平面的法向量,
設(shè)平面的法向量為,則:
由,得,
令,得,
∵直線與平面所成的角和此直線與平面所成的角相等,
∴,即,
∴,
解得或(舍去),
故.
點(diǎn)睛:用向量法確定空間中點(diǎn)的位置的方法
根據(jù)題意建立適當(dāng)?shù)目臻g直角坐標(biāo)系,由條件確定有關(guān)點(diǎn)的坐標(biāo),運(yùn)用共線向量用參數(shù)(參數(shù)的范圍要事先確定)確定出未知點(diǎn)的坐標(biāo),根據(jù)向量的運(yùn)算得到平面的法向量或直線的方向向量,根據(jù)所給的線面角(或二面角)的大小進(jìn)行運(yùn)算,進(jìn)而求得參數(shù)的值,通過(guò)與事先確定的參數(shù)的范圍進(jìn)行比較,來(lái)判斷參數(shù)的值是否符合題意,進(jìn)而得出點(diǎn)是否存在的結(jié)論。
【題型】解答題
【結(jié)束】
21
【題目】如圖,橢圓上的點(diǎn)到左焦點(diǎn)的距離最大值是,已知點(diǎn)在橢圓上,其中為橢圓的離心率.
(1)求橢圓的方程;
(2)過(guò)原點(diǎn)且斜率為的直線交橢圓于、兩點(diǎn),其中在第一象限,它在軸上的射影為點(diǎn),直線交橢圓于另一點(diǎn).證明:對(duì)任意的,點(diǎn)恒在以線段為直徑的圓內(nèi).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,側(cè)棱底面,底面為長(zhǎng)方形,且,是的中點(diǎn),作交于點(diǎn).
(1)證明:平面;
(2)若三棱錐的體積為,求二面角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】等差數(shù)列{an}的前n項(xiàng)和為Sn,且=9,S6=60.
(I)求數(shù)列{an}的通項(xiàng)公式;
(II)若數(shù)列{bn}滿足bn+1﹣bn=(n∈N+)且b1=3,求數(shù)列的前n項(xiàng)和Tn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校高三年級(jí)實(shí)驗(yàn)班與普通班共1000名學(xué)生,其中實(shí)驗(yàn)班學(xué)生200人,普通班學(xué)生800人,現(xiàn)將高三一?荚嚁(shù)學(xué)成績(jī)制成如圖所示頻數(shù)分布直方圖,按成績(jī)依次分為5組,其中第一組([0, 30)),第二組([30, 60)),第三組([60, 90)),的頻數(shù)成等比數(shù)列,第一組與第五組([120, 150))的頻數(shù)相等,第二組與第四組([90, 120))的頻數(shù)相等。
(1)求第三組的頻率;
(2)已知實(shí)驗(yàn)班學(xué)生成績(jī)在第五組,在第四組,剩下的都在第三組,試估計(jì)實(shí)驗(yàn)班學(xué)生數(shù)學(xué)成績(jī)的平均分;
(3)在(2)的條件下,按分層抽樣的方法從第5組中抽取5人進(jìn)行經(jīng)驗(yàn)交流,再?gòu)倪@5人中隨機(jī)抽取3人在全校師生大會(huì)上作經(jīng)驗(yàn)報(bào)告,求抽取的3人中恰有一個(gè)普通班學(xué)生的概率。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的一個(gè)頂點(diǎn)為A(0,-1),焦點(diǎn)在x軸上。若右焦點(diǎn)F到直線x-y+2=0的距離為3。
(1)求橢圓的方程;
(2)設(shè)直線y=kx+m(k≠0)與橢圓相交于不同的兩點(diǎn)M、N。當(dāng)|AM|=|AN|時(shí),求m的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】四棱錐中,底面是的菱形,側(cè)面為正三角形,其所在平面垂直于底面.
(1)若為線段的中點(diǎn),求證:平面;
(2)若為邊的中點(diǎn),能否在棱上找到一點(diǎn),使平面平面?并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列滿足,,設(shè).
(1)求;
(2)判斷數(shù)列是否為等比數(shù)列,并說(shuō)明理由;
(3)求的通項(xiàng)公式.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com