【題目】某人將編號(hào)分別為1,2,3,4,5的5個(gè)小球隨機(jī)放入編號(hào)分別為1,2,3,4,5的5個(gè)盒子中,每個(gè)盒子中放一個(gè)小球若球的編號(hào)與盒子的編號(hào)相同,則視為“放對(duì)”,否則視為“放錯(cuò)”,則全部“放錯(cuò)”的情況有________種.
【答案】44
【解析】
可以利用計(jì)數(shù)原理從正面求解問(wèn)題,先算出所有情況的種數(shù),然后分別計(jì)算有1,2,3,4,5個(gè)小球“放對(duì)”的情況,最后相減即可得到結(jié)果.
解法一 第一步,若1號(hào)盒子“放錯(cuò)”,則1號(hào)盒子有種不同的情況;
第二步,考慮與1號(hào)盒子中所放小球的編號(hào)相同的盒子中的情況,
若該盒子中的小球編號(hào)恰好為1,則5個(gè)小球全部“放錯(cuò)”的情況有(種),
若該盒子中的小球編號(hào)不是1,則5個(gè)小球全部“放錯(cuò)”的情況有(種).
由計(jì)數(shù)原理可知,5個(gè)小球全部“放錯(cuò)”的情況有(種).
解法二 將5個(gè)小球放入5個(gè)盒子中,共有種不同的放法,
其中恰有1個(gè)小球“放對(duì)”的情況有(種),
恰有2個(gè)小球“放對(duì)”的情況有(種),
恰有3個(gè)小球“放對(duì)”的情況有(種),
恰有4個(gè)小球“放對(duì)”的情況有0種,
恰有5個(gè)小球“放對(duì)”的情況有1種,
故全部“放錯(cuò)”的情況有(種).
故答案為:44
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,曲線(xiàn)的參數(shù)方程為(其中為參數(shù)),曲線(xiàn)的參數(shù)方程為(其中為參數(shù)),以原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系.
(1)求曲線(xiàn)、的極坐標(biāo)方程;
(2)射線(xiàn):與曲線(xiàn),分別交于點(diǎn),(且點(diǎn),均異于原點(diǎn)),當(dāng)時(shí),求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在三棱柱中,側(cè)面為菱形,,,側(cè)面為正方形,平面平面.點(diǎn)為線(xiàn)段的中點(diǎn),點(diǎn)在線(xiàn)段上,且.
(1)證明:平面平面;
(2)求直線(xiàn)與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】每年的3月12日是植樹(shù)節(jié),某公司為了動(dòng)員職工積極參加植樹(shù)造林,在植樹(shù)節(jié)期間開(kāi)展植樹(shù)有獎(jiǎng)活動(dòng),設(shè)有甲、乙兩個(gè)摸獎(jiǎng)箱,每位植樹(shù)者植樹(shù)每滿(mǎn)30棵獲得一次甲箱內(nèi)摸獎(jiǎng)機(jī)會(huì),植樹(shù)每滿(mǎn)50棵獲得一次乙箱內(nèi)摸獎(jiǎng)機(jī)會(huì),每箱內(nèi)各有10個(gè)球(這些球除顏色外全相同),甲箱內(nèi)有紅、黃、黑三種顏色的球,其中個(gè)紅球,個(gè)黃球,5個(gè)黑球,乙箱內(nèi)有4個(gè)紅球和6個(gè)黃球,每次摸一個(gè)球后放回原箱,摸得紅球獎(jiǎng)100元,黃球獎(jiǎng)50元,摸得黑球則沒(méi)有獎(jiǎng)金.
(1)經(jīng)統(tǒng)計(jì),每人的植樹(shù)棵數(shù)服從正態(tài)分布,若其中有200位植樹(shù)者參與了抽獎(jiǎng),請(qǐng)估計(jì)植樹(shù)的棵數(shù)在區(qū)間內(nèi)并中獎(jiǎng)的人數(shù)(結(jié)果四舍五入取整數(shù));
附:若,則,
.
(2)若,某位植樹(shù)者獲得兩次甲箱內(nèi)摸獎(jiǎng)機(jī)會(huì),求中獎(jiǎng)金額(單位:元)的分布列;
(3)某人植樹(shù)100棵,有兩種摸獎(jiǎng)方法,
方法一:三次甲箱內(nèi)摸獎(jiǎng)機(jī)會(huì);
方法二:兩次乙箱內(nèi)摸獎(jiǎng)機(jī)會(huì);
請(qǐng)問(wèn):這位植樹(shù)者選哪一種方法所得獎(jiǎng)金的期望值較大.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,過(guò)點(diǎn)的直線(xiàn)l與拋物線(xiàn)交于A,B兩點(diǎn),以AB為直徑作圓,記為,與拋物線(xiàn)C的準(zhǔn)線(xiàn)始終相切.
(1)求拋物線(xiàn)C的方程;
(2)過(guò)圓心M作x軸垂線(xiàn)與拋物線(xiàn)相交于點(diǎn)N,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司準(zhǔn)備設(shè)計(jì)一個(gè)精美的心形巧克力盒子,它是由半圓、半圓和正方形ABCD組成的,且.設(shè)計(jì)人員想在心形盒子表面上設(shè)計(jì)一個(gè)矩形的標(biāo)簽EFGH,標(biāo)簽的其中兩個(gè)頂點(diǎn)E,F在AM上,另外兩個(gè)頂點(diǎn)G,H在CN上(M,N分別是AB,CB的中點(diǎn)).設(shè)EF的中點(diǎn)為P,,矩形EFGH的面積為.
(1)寫(xiě)出S關(guān)于的函數(shù)關(guān)系式
(2)當(dāng)為何值時(shí)矩形EFGH的面積最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),求函數(shù)在處的切線(xiàn)方程;
(2)若函數(shù)在定義域上單調(diào)增,求的取值范圍;
(3)若函數(shù)在定義域上不單調(diào),試判定的零點(diǎn)個(gè)數(shù),并給出證明過(guò)程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,斜三棱柱中,是邊長(zhǎng)為2的正三角形,為的中點(diǎn),平面,點(diǎn)在上,,為與的交點(diǎn),且與平面所成的角為.
(1)求證:平面;
(2)求二面角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校擬從甲、乙兩名同學(xué)中選一人參加疫情知識(shí)問(wèn)答競(jìng)賽,于是抽取了甲、乙兩人最近同時(shí)參加校內(nèi)競(jìng)賽的十次成績(jī),將統(tǒng)計(jì)情況繪制成如圖所示的折線(xiàn)圖.根據(jù)該折線(xiàn)圖,下面結(jié)論正確的是( )
A.甲、乙成績(jī)的中位數(shù)均為7
B.乙的成績(jī)的平均分為6.8
C.甲從第四次到第六次成績(jī)的下降速率要大于乙從第四次到第五次的下降速率
D.甲的成績(jī)的方差小于乙的成績(jī)的方差
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com