【題目】如圖所示,在三棱柱中,側(cè)面為菱形,,,側(cè)面為正方形,平面平面.點(diǎn)為線段的中點(diǎn),點(diǎn)在線段上,且.

1)證明:平面平面;

2)求直線與平面所成角的正弦值.

【答案】1)證明見解析;(2.

【解析】

1)由題意易知,根據(jù)面面垂直的性質(zhì)定理可證,進(jìn)而平面,再根據(jù)面面垂直的判定定理,即可證明結(jié)果;

(2)根據(jù)題意,設(shè)的中點(diǎn)為點(diǎn),以點(diǎn)為坐標(biāo)原,分別以向量,,軸,軸,軸的正方向建立如圖所示空間直角坐標(biāo)系,利用空間向量法即可求出結(jié)果.

1)連接,,因?yàn)樗倪呅?/span>為菱形,,所以為等邊三角形.而點(diǎn)中點(diǎn),所以.

又平面平面

所以平面,所以.

而四邊形為正方形,所以.

,所以.

又因?yàn)?/span>,所以平面.

又因?yàn)?/span>平面,所以平面平面.

2)設(shè)的中點(diǎn)為點(diǎn),以點(diǎn)為坐標(biāo)原,分別以向量,軸,軸,軸的正方向建立如圖所示空間直角坐標(biāo)系,

則有,,,.

,

,所以.

,,

所以.

設(shè)平面的法向量為,則,所以.

,則,

.

設(shè)為直線與平面所成的角,

所以

所以直線與平面所成角的正弦值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),.

1)當(dāng)時(shí),證明:;

2)若只有一個(gè)零點(diǎn),求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,直線l的參數(shù)方程為t為參數(shù)),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為

1)求直線l的普通方程和曲線C的直角坐標(biāo)方程;

2)若直線l與曲線C相交于AB兩點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某生活超市有一專柜預(yù)代理銷售甲乙兩家公司的一種可相互替代的日常生活用品.經(jīng)過一段時(shí)間分別單獨(dú)試銷甲乙兩家公司的商品,從銷售數(shù)據(jù)中隨機(jī)各抽取50天,統(tǒng)計(jì)每日的銷售數(shù)量,得到如下的頻數(shù)分布條形圖.甲乙兩家公司給該超市的日利潤方案為:甲公司給超市每天基本費(fèi)用為90元,另外每銷售一件提成1元;乙公司給超市每天的基本費(fèi)用為130元,每日銷售數(shù)量不超過83件沒有提成,超過83件的部分每件提成10元.

(Ⅰ)求乙公司給超市的日利潤(單位:元)與日銷售數(shù)量的函數(shù)關(guān)系;

(Ⅱ)若將頻率視為概率,回答下列問題:

1)求甲公司產(chǎn)品銷售數(shù)量不超過87件的概率;

2)如果僅從日均利潤的角度考慮,請(qǐng)你利用所學(xué)過的統(tǒng)計(jì)學(xué)知識(shí)為超市作出抉擇,選擇哪家公司的產(chǎn)品進(jìn)行銷售?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,已知平面平面是邊長為2的等邊三角形,點(diǎn)的中點(diǎn),底面是矩形,,上一點(diǎn),且.

1)若,點(diǎn)的中點(diǎn),求證:平面平面;

2)是否存在,使得直線與平面所成角的正切值為?若存在,求出的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某廠加工的零件按箱出廠,每箱有10個(gè)零件,在出廠之前需要對(duì)每箱的零件作檢驗(yàn),人工檢驗(yàn)方法如下:先從每箱的零件中隨機(jī)抽取4個(gè)零件,若抽取的零件都是正品或都是次品,則停止檢驗(yàn);若抽取的零件至少有1個(gè)至多有3個(gè)次品,則對(duì)剩下的6個(gè)零件逐一檢驗(yàn).已知每個(gè)零件檢驗(yàn)合格的概率為0.8,每個(gè)零件是否檢驗(yàn)合格相互獨(dú)立,且每個(gè)零件的人工檢驗(yàn)費(fèi)為2.

1)設(shè)1箱零件人工檢驗(yàn)總費(fèi)用為元,求的分布列;

2)除了人工檢驗(yàn)方法外還有機(jī)器檢驗(yàn)方法,機(jī)器檢驗(yàn)需要對(duì)每箱的每個(gè)零件作檢驗(yàn),每個(gè)零件的檢驗(yàn)費(fèi)為1.6.現(xiàn)有1000箱零件需要檢驗(yàn),以檢驗(yàn)總費(fèi)用的數(shù)學(xué)期望為依據(jù),在人工檢驗(yàn)與機(jī)器檢驗(yàn)中,應(yīng)該選擇哪一個(gè)?說明你的理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】南北朝時(shí)代的偉大數(shù)學(xué)家祖暅在數(shù)學(xué)上有突出貢獻(xiàn),他在實(shí)踐的基礎(chǔ)上提出祖暅原理:冪勢(shì)既同,則積不容異”.其含義是:夾在兩個(gè)平行平面之間的兩個(gè)幾何體,被平行于這兩個(gè)平面的任意平面所截,如果截得的兩個(gè)截面的面積總相等,那么這兩個(gè)幾何體的體積相等,如圖,夾在兩個(gè)平行平面之間的兩個(gè)幾何體的體積分別為,被平行于這兩個(gè)平面的任意平面截得的兩個(gè)截面的面積分別為,則總相等相等的(

A.充分不必要條件B.必要不充分條件

C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某人將編號(hào)分別為1,2,34,55個(gè)小球隨機(jī)放入編號(hào)分別為12,3,4,55個(gè)盒子中,每個(gè)盒子中放一個(gè)小球若球的編號(hào)與盒子的編號(hào)相同,則視為放對(duì),否則視為放錯(cuò),則全部放錯(cuò)的情況有________種.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在我國南宋數(shù)學(xué)家楊輝所著的《詳解九章算法》一書中,用如圖所示的三角形(楊輝三角)解釋了二項(xiàng)和的乘方規(guī)律.右邊的數(shù)字三角形可以看作當(dāng)n依次取0,1,2,3,…時(shí)展開式的二項(xiàng)式系數(shù),相鄰兩斜線間各數(shù)的和組成數(shù)列.例:,,,….

1)寫出數(shù)列的通項(xiàng)公式(結(jié)果用組合數(shù)表示),無需證明;

2)猜想,與的大小關(guān)系,并用數(shù)學(xué)歸納法證明.

查看答案和解析>>

同步練習(xí)冊(cè)答案