【題目】如圖,ABCD是菱形,PA⊥平面ABCD,PA=AD=2,∠BAD=60°.
(1)求證:平面PBD⊥平面PAC;
(2)求點(diǎn)A到平面PBD的距離;
(3)求二面角A﹣PB﹣D的余弦值.

【答案】
(1)證明:設(shè)AC與BD交于O點(diǎn)

∵ABCD是菱形,∴AC⊥BD

以O(shè)A、OB所在直線分別x軸,y軸.以過O且垂直平面ABCD的直線為z軸,建立如圖的空間直角坐標(biāo)系,

∴DB⊥AP

∵AC⊥BD,AC∩AP=A

∴DB⊥平面PAC,又DB平面PDB

∴平面PBD⊥平面PAC


(2)解:設(shè)平面PDB的法向量為

,∴

令z1=1得

∴點(diǎn)A到平面PBD的距離 =


(3)解:設(shè)平面ABP的法向量 ,

,∴

∴二面角A﹣PB﹣D的余弦值為


【解析】(1)先證明AC⊥BD,再利用向量的方法證明DB⊥AP,從而可得DB⊥平面PAC,利用面面垂直的判定可得面PBD⊥平面PAC;(2)求出平面PDB的法向量為 ,從而可求點(diǎn)A到平面PBD的距離;(3)求出平面ABP的法向量 ,利用向量的夾角公式,即可求得二面角A﹣PB﹣D的余弦值.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解平面與平面垂直的判定的相關(guān)知識(shí),掌握一個(gè)平面過另一個(gè)平面的垂線,則這兩個(gè)平面垂直.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列四組中,f(x)與g(x)表示同一函數(shù)的是(
A.f(x)=x,
B.f(x)=x,
C.f(x)=x2 ,
D.f(x)=|x|,g(x)=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=xln(x+ (a>0)為偶函數(shù).
(1)求a的值;
(2)求g(x)=ax2+2x+1在區(qū)間[﹣6,3]上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】雙曲線 =1(a>0,b>0)的左右焦點(diǎn)分別為F1 , F2漸近線分別為l1 , l2 , 位于第一象限的點(diǎn)P在l1上,若l2⊥PF1 , l2∥PF2 , 則雙曲線的離心率是(
A.
B.
C.2
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】集合A={(x,y)|y=a},集合B={(x,y)|y=bx+1,b>0,b≠1},若集合A∩B≠,則實(shí)數(shù)a的取值范圍是(
A.(﹣∞,1)
B.(﹣∞,1]
C.[1,+∞)
D.(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)集合A={x|x2+ax﹣12=0},B={x|x2+bx+c=0},且A≠B,A∪B={﹣3,4},A∩B={﹣3},求實(shí)數(shù)b,c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直三棱柱ABC﹣A1B1C1中,D是BC的中點(diǎn).
(1)求證:A1B∥平面ADC1;
(2)若AB⊥AC,AB=AC=1,AA1=2,求幾何體ABD﹣A1B1C1的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠的污水處理程序如下:原始污水必先經(jīng)過A系統(tǒng)處理,處理后的污水(A級(jí)水)達(dá)到環(huán)保標(biāo)準(zhǔn)(簡(jiǎn)稱達(dá)標(biāo))的概率為.經(jīng)化驗(yàn)檢測(cè),若確認(rèn)達(dá)標(biāo)便可直接排放;若不達(dá)標(biāo)則必須進(jìn)行B系統(tǒng)處理后直接排放.

某廠現(xiàn)有個(gè)標(biāo)準(zhǔn)水量的A級(jí)水池,分別取樣、檢測(cè). 多個(gè)污水樣本檢測(cè)時(shí),既可以逐個(gè)化驗(yàn),也可以將若干個(gè)樣本混合在一起化驗(yàn).混合樣本中只要有樣本不達(dá)標(biāo),則混合樣本的化驗(yàn)結(jié)果必不達(dá)標(biāo).若混合樣本不達(dá)標(biāo),則該組中各個(gè)樣本必須再逐個(gè)化驗(yàn);若混合樣本達(dá)標(biāo),則原水池的污水直接排放.

現(xiàn)有以下四種方案,

方案一:逐個(gè)化驗(yàn);

方案二:平均分成兩組化驗(yàn);

方案三:三個(gè)樣本混在一起化驗(yàn),剩下的一個(gè)單獨(dú)化驗(yàn);

方案四:混在一起化驗(yàn).

化驗(yàn)次數(shù)的期望值越小,則方案的越“優(yōu)”.

(Ⅰ) 若,求個(gè)A級(jí)水樣本混合化驗(yàn)結(jié)果不達(dá)標(biāo)的概率;

(Ⅱ) 若,現(xiàn)有個(gè)A級(jí)水樣本需要化驗(yàn),請(qǐng)問:方案一,二,四中哪個(gè)最“優(yōu)”?

(Ⅲ) 若“方案三”比“方案四”更“優(yōu)”,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列中, , , .?dāng)?shù)列的前n項(xiàng)和為,滿足,

(1)求數(shù)列的通項(xiàng)公式;

(2)數(shù)列能否為等差數(shù)列?若能,求其通項(xiàng)公式;若不能,試說明理由;

(3)若數(shù)列是各項(xiàng)均為正整數(shù)的遞增數(shù)列,設(shè),則當(dāng), , , 均成等差數(shù)列時(shí),求正整數(shù) , 的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案