【題目】如圖,在棱長為a的正方體ABCD﹣A1B1C1D1,E,F(xiàn),P,Q分別是BC,C1D1,AD1,BD的中點(diǎn),求證:
(1)PQ∥平面DCC1D1
(2)EF∥平面BB1D1D.
【答案】(1)(2)證明見解析
【解析】
試題(1)連結(jié)AC、D1C,Q是AC的中點(diǎn),從而PQ∥D1C,由此能證明PQ∥平面DCC1D1.
(2)取CD中點(diǎn)G,連結(jié)EG、FG,由已知得平面FGE∥平面BB1D1D,由此能證明EF∥平面BB1D1D.
(1)證明:連結(jié)AC、D1C,
∵ABCD是正方形,∴Q是AC的中點(diǎn),
又P是AD1的中點(diǎn),∴PQ∥D1C,
∵PQ平面DCC1D1,D1C平面DCC1D1,
∴PQ∥平面DCC1D1.
(2)證明:取CD中點(diǎn)G,連結(jié)EG、FG,
∵E,F(xiàn)分別是BC,C1D1的中點(diǎn),
∴FG∥D1D,EG∥BD,
又FG∩EG=G,∴平面FGE∥平面BB1D1D,
∵EF平面FGE,∴EF∥平面BB1D1D.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為推導(dǎo)球的體積公式,劉徽制造了一個牟合方蓋(在一個正方體內(nèi)作兩個互相垂直的內(nèi)切圓柱,這兩個圓柱的公共部分叫做牟合方蓋),但沒有得到牟合方蓋的體積.200年后,祖暅給出牟合方蓋的體積計算方法,其核心過程被后人稱為祖暅原理:緣冪勢既同,則積不容異.意思是,夾在兩個平行平面間的兩個幾何體被平行于這兩個平行平面的任意平面所截,如果截面的面積總相等,那么這兩個幾何體的體積也相等.現(xiàn)在截取牟合方蓋的八分之一,它的外切正方體的棱長為1,如圖所示,根據(jù)以上信息,則該牟合方蓋的體積為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2018年2月22日,在韓國平昌冬奧會短道速滑男子米比賽中,中國選手武大靖以連續(xù)打破世界紀(jì)錄的優(yōu)異表現(xiàn),為中國代表隊奪得了本屆冬奧會的首枚金牌,也創(chuàng)造了中國男子冰上競速項(xiàng)目在冬奧會金牌零的突破.根據(jù)短道速滑男子米的比賽規(guī)則,運(yùn)動員自出發(fā)點(diǎn)出發(fā)進(jìn)入滑行階段后,每滑行一圈都要依次經(jīng)過個直道與彎道的交接口.已知某男子速滑運(yùn)動員順利通過每個交接口的概率均為,摔倒的概率均為.假定運(yùn)動員只有在摔倒或到達(dá)終點(diǎn)時才停止滑行,現(xiàn)在用表示該運(yùn)動員滑行最后一圈時在這一圈內(nèi)已經(jīng)順利通過的交接口數(shù).
(1)求該運(yùn)動員停止滑行時恰好已順利通過個交接口的概率;
(2)求的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓過點(diǎn),且離心率為.
(1)求橢圓的方程;
(2)過作斜率分別為的兩條直線,分別交橢圓于點(diǎn),且,證明:直線過定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正項(xiàng)數(shù)列的前項(xiàng)和為,且,等比數(shù)列的首項(xiàng)為1,公比為(),且,,成等差數(shù)列.
(1)求的通項(xiàng)公式;
(2)求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)在上是奇函數(shù).
(1)求;
(2)對,不等式恒成立,求實(shí)數(shù)的取值范圍;
(3)令,若關(guān)于的方程有唯一實(shí)數(shù)解,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知海島在海島北偏東,,相距海里,物體甲從海島以海里/小時的速度沿直線向海島移動,同時物體乙從海島沿著海島北偏西方向以海里/小時的速度移動.
(1)問經(jīng)過多長時間,物體甲在物體乙的正東方向;
(2)求甲從海島到達(dá)海島的過程中,甲、乙兩物體的最短距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù).
(1)若的解集為,且方程有兩個相等的根,求解析式;
(2)若,且對任意實(shí)數(shù)均有成立,當(dāng)時,是單調(diào)函數(shù),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線C1的參數(shù)方程為(t為參數(shù)),以原點(diǎn)O為極點(diǎn),以x軸的正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為.
(1)求曲線C1的極坐標(biāo)方程和C2的直角坐標(biāo)方程;
(2)射線OP:(其中)與C2交于P點(diǎn),射線OQ:與C2交于Q點(diǎn),求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com