【題目】為推導球的體積公式,劉徽制造了一個牟合方蓋(在一個正方體內(nèi)作兩個互相垂直的內(nèi)切圓柱,這兩個圓柱的公共部分叫做牟合方蓋),但沒有得到牟合方蓋的體積.200年后,祖暅給出牟合方蓋的體積計算方法,其核心過程被后人稱為祖暅原理:緣冪勢既同,則積不容異.意思是,夾在兩個平行平面間的兩個幾何體被平行于這兩個平行平面的任意平面所截,如果截面的面積總相等,那么這兩個幾何體的體積也相等.現(xiàn)在截取牟合方蓋的八分之一,它的外切正方體的棱長為1,如圖所示,根據(jù)以上信息,則該牟合方蓋的體積為( )

A. B. C. D.

【答案】B

【解析】分析:在高度處的截面,用平行與正方體上下底面的平面去截,記截得兩圓柱體公共部分所得面積為,截得正方體所得面積為,解得椎體所得面積為,

,求出,再由定積分求出錐體體積,由正方體的體積減去錐體體積即可.

詳解:在高度處的截面,用平行與正方體上下底面的平面去截,

記截得兩圓柱體公共部分所得面積為,截得正方體所得面積為

可得,

,可得,則,

所以該牟合方蓋的體積為,故選B.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐中,,,中點.

(1)證明:平面

(2)若平面,是邊長為2的正三角形,求點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,正方體中,M,N,E,F(xiàn)分別是棱A1B1,A1D1,B1C1,C1D1的中點,求證:平面AMN∥平面EFDB.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】隨著社會的發(fā)展,終身學習成為必要,工人知識要更新,學習培訓必不可少,現(xiàn)某工廠有工人1000名,其中250名工人參加短期培訓(稱為類工人),另外750名工人參加過長期培訓(稱為類工人),從該工廠的工人中共抽查了100名工人,調(diào)查他們的生產(chǎn)能力(此處生產(chǎn)能力指一天加工的零件數(shù))得到類工人生產(chǎn)能力的莖葉圖(左圖),類工人生產(chǎn)能力的頻率分布直方圖(右圖).

(1)問類、類工人各抽查了多少工人,并求出直方圖中的

(2)求類工人生產(chǎn)能力的中位數(shù),并估計類工人生產(chǎn)能力的平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);

(3)若規(guī)定生產(chǎn)能力在內(nèi)為能力優(yōu)秀,由以上統(tǒng)計數(shù)據(jù)在答題卡上完成下面的列聯(lián)表,并判斷是否可以在犯錯誤概率不超過0.1%的前提下,認為生產(chǎn)能力與培訓時間長短有關.能力與培訓時間列聯(lián)表

短期培訓

長期培訓

合計

能力優(yōu)秀

能力不優(yōu)秀

合計

參考數(shù)據(jù):

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

參考公式:,其中.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】ABC,a=7,b=8,cosB= –

A;

AC邊上的高

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】海水養(yǎng)殖場進行某水產(chǎn)品的新、舊網(wǎng)箱養(yǎng)殖方法的產(chǎn)量對比,收獲時各隨機抽取了100個網(wǎng)箱,測量各箱水產(chǎn)品的產(chǎn)量(單位:kg), 其頻率分布直方圖如下:

(1)記A表示事件“舊養(yǎng)殖法的箱產(chǎn)量低于50 kg”,估計A的概率;

(2)填寫下面列聯(lián)表,并根據(jù)列聯(lián)表判斷是否有99%的把握認為箱產(chǎn)量與養(yǎng)殖方法有關:

箱產(chǎn)量<50 kg

箱產(chǎn)量≥50 kg

舊養(yǎng)殖法

新養(yǎng)殖法

(3)根據(jù)箱產(chǎn)量的頻率分布直方圖,對這兩種養(yǎng)殖方法的優(yōu)劣進行比較.

附:

P

0.050 0.010 0.001

k

3.841 6.635 10.828

.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知是棱長為的正方體.

1)求證:平面平面;

2)求多面體的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知三棱錐中,側(cè)面底面,,則三棱錐外接球的體積為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在棱長為a的正方體ABCD﹣A1B1C1D1,E,F(xiàn),P,Q分別是BC,C1D1,AD1,BD的中點,求證:

(1)PQ平面DCC1D1

(2)EF平面BB1D1D.

查看答案和解析>>

同步練習冊答案