【題目】某校初三年級(jí)有名學(xué)生,隨機(jī)抽查了名學(xué)生,測(cè)試分鐘仰臥起坐的成績(jī)(次數(shù)),將數(shù)據(jù)整理后繪制成如圖所示的頻率分布直方圖.用樣本估計(jì)總體,下列結(jié)論正確的是( )

A. 該校初三年級(jí)學(xué)生分鐘仰臥起坐的次數(shù)的中位數(shù)為

B. 該校初三年級(jí)學(xué)生分鐘仰臥起坐的次數(shù)的眾數(shù)為

C. 該校初三年級(jí)學(xué)生分鐘仰臥起坐的次數(shù)超過(guò)次的人數(shù)約有

D. 該校初三年級(jí)學(xué)生分鐘仰臥起坐的次數(shù)少于次的人數(shù)約為人.

【答案】C

【解析】第一組數(shù)據(jù)的頻率為;第二組數(shù)據(jù)的頻率為,第三組的頻率為中位數(shù)在第三組內(nèi),設(shè)中位數(shù)為,則數(shù)據(jù)的中位數(shù)為,錯(cuò)誤;最高矩形是第三組數(shù)據(jù)第三組數(shù)據(jù)的中間值為人眾數(shù)為,錯(cuò)誤;學(xué)生分鐘仰臥起坐的成績(jī)超過(guò)次的頻率為人超過(guò)次的人數(shù)為人,故正確;學(xué)生分鐘仰臥起坐的成績(jī)少于次的頻率為分鐘仰臥起坐的成績(jī)少于次的人數(shù)為,錯(cuò)誤,故選C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2018屆北京市海淀區(qū)】如圖,三棱柱側(cè)面底面

, 分別為棱的中點(diǎn).

Ⅰ)求證:

Ⅱ)求三棱柱的體積;

Ⅲ)在直線上是否存在一點(diǎn),使得平面?若存在,求出的長(zhǎng);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖矩形中, .點(diǎn)邊上, , 沿直線向上折起成.記二面角的平面角為,當(dāng) 時(shí),

①存在某個(gè)位置,使;

②存在某個(gè)位置,使;

③任意兩個(gè)位置,直線和直線所成的角都不相等.

以上三個(gè)結(jié)論中正確的序號(hào)是

A. B. ①② C. ①③ D. ②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,該幾何體是由一個(gè)直三棱柱和一個(gè)正四棱錐組合而成, ,

(Ⅰ)證明:平面平面;

(Ⅱ)求正四棱錐的高,使得二面角的余弦值是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

1)設(shè)

若函數(shù)處的切線過(guò)點(diǎn),求的值;

當(dāng)時(shí),若函數(shù)上沒有零點(diǎn),求的取值范圍.

2)設(shè)函數(shù),且,求證: 當(dāng)時(shí),

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在底面為正方形的四棱柱中, .

(1)證明:平面平面;

(2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)有兩個(gè)不同的極值點(diǎn),

(1)求實(shí)數(shù)的取值范圍;

(2)設(shè)上述的取值范圍為,若存在,使對(duì)任意,不等式恒成立求實(shí)數(shù)的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知m,n∈Rf(x)=|xm|+|2xn|.

(1)當(dāng)mn=1時(shí),求f(x)的最小值;

(2)若f(x)的最小值為2,求證.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(2017·安徽名校階段性測(cè)試)如圖所示,正方形ABCD所在平面與圓O所在平面相交于CD,線段CD為圓O的弦,AE垂直于圓O所在平面,垂足E是圓O上異于C,D的點(diǎn),AE=3,圓O的直徑CE=9.

(1)求證:平面ABE⊥平面ADE;

(2)求五面體ABCDE的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案