【題目】小明設(shè)計(jì)了一款正四棱錐形狀的包裝盒,如圖所示,是邊長為的正方形硬紙片,切去陰影部分所示的四個(gè)全等的等腰三角形,再沿虛線折起,使得四個(gè)點(diǎn)重合于圖中的點(diǎn),正好形成一個(gè)正四棱錐形狀的包裝盒,設(shè)正四棱錐底面正方形的邊長為.

1)試用表示該四棱錐的高度,并指出的取值范圍;

2)若要求側(cè)面積不小于,求該四棱錐的高度的最大值,并指出此時(shí)該包裝盒的容積.

【答案】1;(2,.

【解析】

1)設(shè)正四棱錐側(cè)面等腰三角形高為,由正方形,可得,再由組成直角三角形,即可得到關(guān)系,進(jìn)而求出的范圍;

2)利用(1)中關(guān)系,求出側(cè)面積關(guān)于的函數(shù),進(jìn)一步求出滿足條件的范圍,可求出的最大值,即可求出結(jié)論.

1)設(shè)正四棱錐側(cè)面等腰三角形高為,在正方形中,

在四棱錐中,

,

,

;

2)四棱錐的側(cè)面積,

,解得

,當(dāng)時(shí),

,

此時(shí)包裝盒的容積為

所以滿足條件的四棱錐的高度的最大值為20,

此時(shí)該包裝盒的容積為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出以下命題:①x2+ y2 ≠0,則xy不全為零的否命題;②正多邊形都相似的逆命題;③m>0,則x2+x-m=0有實(shí)根的逆否命題;其中真命題的序號是____________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),

(Ⅰ)若內(nèi)單調(diào)遞減,求實(shí)數(shù)的取值范圍;

(Ⅱ)若函數(shù)有兩個(gè)極值點(diǎn)分別為,,證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)討論極值點(diǎn)的個(gè)數(shù);

(2)若的一個(gè)極值點(diǎn),且,證明: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,橢圓的離心率,且橢圓C的短軸長為.

(1)求橢圓的方程;

(2)設(shè)橢圓上的三個(gè)動點(diǎn).

i)若直線過點(diǎn)D,且點(diǎn)是橢圓的上頂點(diǎn),求面積的最大值;

ii)試探究:是否存在是以為中心的等邊三角形,若存在,請給出證明;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在長方形中,,點(diǎn)為線段上一動點(diǎn),現(xiàn)將沿折起,使點(diǎn)在面內(nèi)的射影在直線上,當(dāng)點(diǎn)運(yùn)動到,則點(diǎn)所形成軌跡的長度為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知動點(diǎn)M到定點(diǎn)F1(2,0)F2(2,0)的距離之和為.

1)求動點(diǎn)M的軌跡C的方程;

2)設(shè)N(0,2),過點(diǎn)P(1,-2)作直線l,交曲線C于不同于N的兩點(diǎn)AB,直線NA,NB的斜率分別為k1k2,求k1k2的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中,角A,B,C的對邊分別為ab,c,.

1)求角C;

2)設(shè)D為邊AC上一點(diǎn),ADBD,若BC2,的面積為3,求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左,右焦點(diǎn)分別為,該橢圓的離心率為,以原點(diǎn)為圓心,橢圓的短半軸長為半徑的圓與直線相切.

(I)求橢圓的方程;

(Ⅱ)如圖,若斜率為的直線軸,橢圓順次交于點(diǎn)在橢圓左頂點(diǎn)的左側(cè))且,求證:直線過定點(diǎn);并求出斜率的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案