【題目】已知f(x)=x2+2xtanθ-1,x∈[-1,],其中θ∈(-,).
(1)當(dāng)θ=-時,求函數(shù)f(x)的最大值;
(2)求θ的取值范圍,使y=f(x)在區(qū)間[-1,]上是單調(diào)函數(shù).
【答案】(1) (2) (-,-]∪[,)
【解析】
(1)求出函數(shù)的解析式,根據(jù)二次函數(shù)的性質(zhì)求出函數(shù)的最大值即可;
(2)根據(jù)二次函數(shù)的性質(zhì)得到函數(shù)f(x)的單調(diào)性,求出tanθ的范圍,求出θ的范圍即可.
(1)當(dāng)θ=-時,f(x)=x2-x-1
=(x-)2-,x∈[-1,].
∴當(dāng)x=-1時,f(x)的最大值為.
(2)函數(shù)f(x)=(x+tanθ)2-(1+tan2θ)圖象的對稱軸為x=-tanθ,
∵y=f(x)在[-1,]上是單調(diào)函數(shù),
∴-tanθ≤-1或-tanθ≥,
即tanθ≥1或tanθ≤-.
因此,θ角的取值范圍是(-,-]∪[,).
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐P-ABCD中,底面ABCD是邊長為2的正方形,,,且,E為PD中點.
(I)求證:平面ABCD;
(II)求二面角B-AE-C的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線,斜率為的直線交拋物線于,兩點,當(dāng)直線過點時,以為直徑的圓與直線相切.
(1)求拋物線的方程;
(2)與平行的直線交拋物線于,兩點,若平行線,之間的距離為,且的面積是面積的倍,求和的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司共有60位員工,為提高員工的業(yè)務(wù)技術(shù)水平,公司擬聘請專業(yè)培訓(xùn)機構(gòu)進行培訓(xùn).培訓(xùn)的總費用由兩部分組成:一部分是給每位參加員工支付400元的培訓(xùn)材料費;另一部分是給培訓(xùn)機構(gòu)繳納的培訓(xùn)費.若參加培訓(xùn)的員工人數(shù)不超過30人,則每人收取培訓(xùn)費1000元;若參加培訓(xùn)的員工人數(shù)超過30人,則每超過1人,人均培訓(xùn)費減少20元.設(shè)公司參加培訓(xùn)的員工人數(shù)為x人,此次培訓(xùn)的總費用為y元.
(1)求出y與x之間的函數(shù)關(guān)系式;
(2)請你預(yù)算:公司此次培訓(xùn)的總費用最多需要多少元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】
某建筑公司用8000萬元購得一塊空地,計劃在該地塊上建造一棟至少12層、每層4000平方米的樓房.經(jīng)初步估計得知,如果將樓房建為x(x12)層,則每平方米的平均建筑費用為Q(x)=3000+50x(單位:元).為了使樓房每平方米的平均綜合費用最少,該樓房應(yīng)建為多少層?每平方米的平均綜合費最小值是多少?
(注:平均綜合費用=平均建筑費用+平均購地費用,平均購地費用=)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出定義:若(其中為整數(shù)),則叫做離實數(shù)最近的整數(shù),記作,即.設(shè)函數(shù),二次函數(shù),若函數(shù)與的圖象有且只有一個公共點,則的取值不可能是( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的定義域為,且對任意實數(shù)恒有(且)成立.
(1)求函數(shù)的解析式;
(2)討論在上的單調(diào)性,并用定義加以證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖:已知四棱錐P—ABCD的底面ABCD是平行四邊形,PA⊥面ABCD,M是AD的中點,N是PC的中點.
(1)求證:MN∥面PAB;
(2)若平面PMC⊥面PAD,求證:CM⊥AD.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校高二年級舉辦了一次數(shù)學(xué)史知識競賽活動,共有名學(xué)生參加了這次競賽.為了解本次競賽的成績情況,從中抽取了部分學(xué)生的成績(得分均為整數(shù),滿分為分)進行統(tǒng)計,統(tǒng)計結(jié)果見下表.請你根據(jù)頻率分布表解答下列問題:
(1)填出頻率分布表中的空格;
(2)為鼓勵更多的學(xué)生了解“數(shù)學(xué)史”知識,成績不低于分的同學(xué)能獲獎,請估計在參加的名學(xué)生中大概有多少名學(xué)生獲獎?
(3)在上述統(tǒng)計數(shù)據(jù)的分析中有一項計算見算法流程圖,求輸出的的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com