【題目】給出下列命題:
①三點確定一個平面;
②在空間中,過直線外一點只能作一條直線與該直線平行;
③若平面α上有不共線的三點到平面β的距離相等,則α∥β;
④若直線a、b、c滿足a⊥b、a⊥c,則b∥c.
其中正確命題的個數(shù)是 .
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的兩個焦點,動點在橢圓上,且使得的點恰有兩個,動點到焦點的距離的最大值為.
(1)求橢圓的方程;
(2)如圖,以橢圓的長軸為直徑作圓,過直線上的動點作圓的兩條切線,設切點分別為,若直線與橢圓交于不同的兩點,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】“真人秀”熱潮在我國愈演愈烈,為了了解學生是否喜歡某“真人秀”節(jié)目,在某中學隨機調查了110名學生,得到如下列聯(lián)表:
男 | 女 | 總計 | |
喜歡 | 40 | 20 | 60 |
不喜歡 | 20 | 30 | 50 |
總計 | 60 | 50 | 110 |
由算得.
附表:
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
參照附表,得到的正確結論是( )
A. 在犯錯誤的概率不超過的前提下,認為“喜歡該節(jié)目與性別有關”
B. 在犯錯誤的概率不超過的前提下,認為“喜歡該節(jié)目與性別無關”
C. 有以上的把握認為“喜歡該節(jié)目與性別有關”
D. 有
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在各棱長均為2的三棱柱中,側面底面, .
(1) 求側棱與平面所成角的正弦值的大。
(2) 求異面直線間的距離;
(3) 已知點滿足,在直線上是否存在點,使平面?若存在,請確定點的位置,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在正方體ABCD﹣A1B1C1D1中,M、N分別是棱C1D1、C1C的中點.以下四個結論:
①直線AM與直線CC1相交;
②直線AM與直線BN平行;
③直線AM與直線DD1異面;
④直線BN與直線MB1異面.
其中正確結論的序號為 .
(注:把你認為正確的結論序號都填上)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】微信已成為人們常用的社交軟件,“微信運動”是微信里由騰訊開發(fā)的一個類似計步數(shù)據(jù)庫的公眾賬號.手機用戶可以通過關注“微信運動”公眾號查看自己每天行走的步數(shù),同時也可以和好友進行運動量的或點贊.現(xiàn)從小明的微信朋友圈內(nèi)隨機選取了40人(男、女各20人),記錄了他們某一天的走路步數(shù),并將數(shù)據(jù)整理如下表:
步數(shù) 性別 | 02000 | 20015000 | 50018000 | 800110000 | >10000 |
男 | 1 | 2 | 4 | 7 | 6 |
女 | 0 | 3 | 9 | 6 | 2 |
若某人一天的走路步數(shù)超過8000步被系統(tǒng)評定為“積極型”,否則被系統(tǒng)評定為“懈怠型”.
(1)利用樣本估計總體的思想,試估計小明的所有微信好友中每日走路步數(shù)超過10000步的概率;
(2)根據(jù)題意完成下面的列聯(lián)表,并據(jù)此判斷能否有90%的把握認為“評定類型”與“性別”有關?
積極型 | 懈怠型 | 總計 | |
男 | |||
女 | |||
總計 |
附:
0.10 | 0.05 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】第二十九屆夏季奧林匹克運動會將于2008年8月8日在北京舉行,若集合A={參加北京奧運會比賽的運動員},集合B={參加北京奧運會比賽的男運動員}.集合C={參加北京奧運會比賽的女運動員},則下列關系正確的是( 。
A.AB
B.BC
C.A∩B=C
D.B∪C=A
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com