【題目】設(shè)方程有兩個不等的負(fù)根, 方程無實根,若“”為真,“”為假,求實數(shù)的取值范圍.
【答案】(1,2]∪[3,+∞)
【解析】試題分析:本題考查邏輯聯(lián)接詞,由“或”為真,“且”為假可知,“真假”或“假真”,先求命題為真命題時實數(shù)的取值范圍,從而得到為假命題時的取值范圍,同樣先求命題為真命題時的取值范圍,再求為假命題時的取值范圍,然后求“真假”時的范圍,求“假真”時的范圍,最后取兩部分范圍的并集.
試題解析:若方程有兩個不等的負(fù)根,則,解得.
即………………2分
若方程無實根,
則,
解得: ,即.…………4分
因“”為真,所以至少有一為真,又“”為假,所以至少有一為假,
因此, 兩命題應(yīng)一真一假,即為真, 為假或為假, 為真.……6分
∴或.
解得: 或.…………………………10分
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于函數(shù),若在定義域內(nèi)存在實數(shù),滿足,則稱為“局部奇函數(shù)”.
為定義在上的“局部奇函數(shù)”;
曲線與軸交于不同的兩點;
若為假命題, 為真命題,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量,函數(shù),若函數(shù)的圖象與軸的兩個相鄰交點的距離為.
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若時, ,求的值.
(3)若,且有且僅有一個實根,求實數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校高一年級某次數(shù)學(xué)競賽隨機抽取名學(xué)生的成績,分組為,統(tǒng)計后得到頻率分布直方圖如圖所示:
(1)試估計這組樣本數(shù)據(jù)的眾數(shù)和中位數(shù)(結(jié)果精確到);
(2)年級決定在成績中用分層抽樣抽取人組成一個調(diào)研小組,對髙一年級學(xué)生課外學(xué)習(xí)數(shù)學(xué)的情況做一個調(diào)查,則在這三組分別抽取了多少人?
(3)現(xiàn)在要從(2)中抽取的人中選出正副個小組長,求成績在中至少有人當(dāng)選為正、副小組長的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一位同學(xué)家里訂了一份報紙,送報人每天都在早上6 : 207 : 40之間將報紙送達,該同學(xué)需要早上7 : 008 : 00之間出發(fā)上學(xué),則這位同學(xué)在離開家之前能拿到報紙的概率為 ( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列,,其前項和滿足,其中.
(1)設(shè),證明:數(shù)列是等差數(shù)列;
(2)設(shè),為數(shù)列的前項和,求證:;
(3)設(shè)(為非零整數(shù),),試確定的值,使得對任意,都有成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校從參加高三模擬考試的學(xué)生中隨機抽取60名學(xué)生,將其數(shù)學(xué)成績(均為整數(shù))分成六段[90,100),[100,110),…,[140,150)后得到如下部分頻率分布直方圖.觀察圖形的信息,回答下列問題:
求分?jǐn)?shù)在[120,130)內(nèi)的頻率,并補全這個頻
率分布直方圖;
統(tǒng)計方法中,同一組數(shù)據(jù)常用該組區(qū)間的中點
值作為代表,據(jù)此估計本次考試的平均分;
(3)用分層抽樣的方法在分?jǐn)?shù)段為[110,130)的學(xué)生中抽取一個容量為6的樣本,將該樣本看成一個總體,從中任取2個,求至多有1人在分?jǐn)?shù)段[120,130)內(nèi)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某商場舉行有獎促銷活動,顧客購買一定金額商品后即可抽獎,每次抽獎都從裝有4個紅球、6個白球的甲箱和裝有5個紅球、5個白球的乙箱中,各隨機摸出1個球,在摸出的2個球中,若都是紅球,則獲一等獎;若只有1個紅球,則獲二等獎;若沒有紅球,則不獲獎.
(1)求顧客抽獎1次能獲獎的概率;
(2)若某顧客有3次抽獎機會,記該顧客在3次抽獎中獲一等獎的次數(shù)為,求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com