【題目】某校從參加高三模擬考試的學生中隨機抽取60名學生,將其數學成績(均為整數)分成六段[90,100),[100,110),…,[140,150)后得到如下部分頻率分布直方圖.觀察圖形的信息,回答下列問題:
求分數在[120,130)內的頻率,并補全這個頻
率分布直方圖;
統計方法中,同一組數據常用該組區(qū)間的中點
值作為代表,據此估計本次考試的平均分;
(3)用分層抽樣的方法在分數段為[110,130)的學生中抽取一個容量為6的樣本,將該樣本看成一個總體,從中任取2個,求至多有1人在分數段[120,130)內的概率.
【答案】(1)如解析所示;(2)121;(3)
【解析】試題分析:(1)頻率分布直方圖中,小矩形的面積等于這一組的頻率,而頻率的和等于1,可求出分數在內的頻率,即可求出矩形的高,畫出圖象即可;(2)同一組數據常用該組區(qū)間的中點值作為代表,將中點值與每一組的頻率相差再求出它們的和即可求出本次考試的平均分;(3)先計算、分數段的人數,然后按照比例進行抽取,設從樣本中任取2人,至多有1人在分數段為事件,然后列出基本事件空間包含的基本事件,以及事件包含的基本事件,最后將包含事件的個數求出題目比值即可.
試題解析:(1)分數在[120,130)內的頻率為:1-(0.1+0.15+0.15+0.25+0.05)=1-0.7=0.3, ,補全后的直方圖如下:
(2)平均分為:95×0.1+105×0.15+115×0.15+125×0.3+135×0.25+145×0.05=121.
(3)由題意,[110,120)分數段的人數為:60×0.15=9人,[120,130)分數段的人數為:60×0.3=18人.
∵用分層抽樣的方法在分數段為[110,130)的學生中抽取一個容量為6的樣本,
∴需在[110,120)分數段內抽取2人,并分別記為m,n;
在[120,130)分數段內抽取4人并分別記為a,b,c,d;
設“從樣本中任取2人,至多有1人在分數段[120,130)內”為事件A,則基本事件有:(m,n),(m,a),(m,b),(m,c),(m,d),(n,a),(n,b),(n,c),(n,d),(a,b),(a,c),(a,d),(b,c),(b,d),(c,d)共15種.
事件A包含的基本事件有:(m,n),(m,a),(m,b),(m,c),(m,d),(n,a),(n,b),(n,c),(n,d)共9種,∴.
科目:高中數學 來源: 題型:
【題目】“真人秀”熱潮在我國愈演愈烈,為了了解學生是否喜歡某“真人秀”節(jié)目,在某中學隨機調查了110名學生,得到如下列聯表:
男 | 女 | 總計 | |
喜歡 | 40 | 20 | 60 |
不喜歡 | 20 | 30 | 50 |
總計 | 60 | 50 | 110 |
由算得.
附表:
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
參照附表,得到的正確結論是( )
A. 在犯錯誤的概率不超過的前提下,認為“喜歡該節(jié)目與性別有關”
B. 在犯錯誤的概率不超過的前提下,認為“喜歡該節(jié)目與性別無關”
C. 有以上的把握認為“喜歡該節(jié)目與性別有關”
D. 有
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
在極坐標系中,已知點,圓
(I)在極坐標系中,以極點為原點,極軸為軸正半軸建立平面直角坐標系,取相同的長度單位,求圓的直角坐標方程;
(II)求點到圓圓心的距離.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】甲、乙、丙三臺機床各自獨立地加工同一種零件,已知甲機床加工的零件是一等品而乙機床加工的零件不是一等品的概率是,乙機床加工的零件是一等品而丙機床加工的零件不是一等品的概率是,甲、乙兩臺機床加工的零件都是一等品的概率是.
(1)分別求甲、乙、丙三臺機床各自加工的零件是一等品的概率;
(2)從甲、乙、丙三臺機床加工的零件中各取一個檢驗,求至少有一個一等品的概率;
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知圓經過點, ,并且直線平分圓.
(1)求圓的方程;
(2)若直線與圓交于兩點,是否存在直線,使得(為坐標原點),若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】隨機抽取了40輛汽車在經過路段上某點是的車速(),現將其分成六段:,
后得到如圖所示的頻率分布直方圖.
(I)現有某汽車途經該點,則其速度低于80的概率約是多少?
(II)根據頻率分布直方圖,抽取的40輛汽車經過該點的平均速度是多少?
(III)在抽取的40輛汽車且速度在()內的汽車中任取2輛,求這2輛車車速都在()內的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知以為圓心的圓及其上一點.
(1)是否存在直線與圓有兩個交點,并且,若有,求此直線方程,若沒有,請說明理由;
(2)設點滿足:存在圓上的兩點和使得,求實數的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com