【題目】如圖,在等腰直角中,,,點(diǎn)在線段.

(Ⅰ) ,求的長;

)若點(diǎn)在線段上,且,問:當(dāng)取何值時(shí),的面積最?并求出面積的最小值.

【答案】(Ⅰ))當(dāng)時(shí),的最大值為,此時(shí)的面積取到最小值.即2時(shí),的面積的最小值為

【解析】

:(1)△OMP,∠OPM=45°,OM=,OP=2,

由余弦定理得,OM2=OP2+MP2-2OP·MP·cos45°,

MP2-4MP+3=0,

解得MP=1MP=3.

(2)設(shè)∠POM=α,0°≤α≤60°,

△OMP,由正弦定理,

=,

所以OM=,

同理ON=.

SOMN=OM·ON·sin∠MON

=×

=

=

=

=

=

=.

因?yàn)?/span>0°≤α≤60°,

30°≤2α+30°≤150°,

所以當(dāng)α=30°時(shí),sin(2α+30°)的最大值為1,

此時(shí)△OMN的面積取到最小值.

∠POM=30°時(shí),△OMN的面積的最小值為8-4.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)準(zhǔn)備投資 萬元興辦一所中學(xué),對當(dāng)?shù)亟逃袌鲞M(jìn)行調(diào)查后,得到了如下的數(shù)據(jù)表格(以班級為單位):

初中

26

4

高中

54

6

第一年因生源和環(huán)境等因素,全?偘嗉壷辽 個(gè),至多 個(gè),若每開設(shè)一個(gè)初、高中班,可分別獲得年利潤 萬元、 萬元,則第一年利潤最大為

A. 萬元 B. 萬元 C. 萬元 D. 萬元

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某大學(xué)藝術(shù)專業(yè)400名學(xué)生參加某次測評,根據(jù)男女學(xué)生人數(shù)比例,使用分層抽樣的方法從中隨機(jī)抽取了100名學(xué)生,記錄他們的分?jǐn)?shù),將數(shù)據(jù)分成7組: ,并整理得到如下頻率分布直方圖:

(Ⅰ)從總體的400名學(xué)生中隨機(jī)抽取一人,估計(jì)其分?jǐn)?shù)小于70的概率;
(Ⅱ)已知樣本中分?jǐn)?shù)小于40的學(xué)生有5人,試估計(jì)總體中分?jǐn)?shù)在區(qū)間[40,50)內(nèi)的人數(shù);
(Ⅲ)已知樣本中有一半男生的分?jǐn)?shù)不小于70,且樣本中分?jǐn)?shù)不小于70的男女生人數(shù)相等.試估計(jì)總體中男生和女生人數(shù)的比例.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩艘輪船都要?吭谕粋(gè)泊位,它們可能在一晝夜的任意時(shí)刻到達(dá).甲、乙兩船?坎次坏臅r(shí)間分別為4小時(shí)與2小時(shí),求有一艘船?坎次粫r(shí)必需等待一段時(shí)間的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)調(diào)查了某班全部 45 名同學(xué)參加書法社團(tuán)和演講社團(tuán)的情況,數(shù)據(jù)如下表:(單位:人)

參加書法社團(tuán)

未參加書法社團(tuán)

參加演講社團(tuán)

8

5

未參加書法社團(tuán)

2

30

(1)從該班隨機(jī)選 1 名同學(xué),求該同學(xué)至少參加上述一個(gè)社團(tuán)的概率;

(2)在既參加書法社團(tuán)又參加演講社團(tuán)的 8 名同學(xué)中,有 5 名男同學(xué),3名女同學(xué).現(xiàn)從這 5 名男同學(xué)和 3 名女同學(xué)中各隨機(jī)選 1 人,求被選中且未被選中的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】分別求適合下列條件的橢圓的標(biāo)準(zhǔn)方程.
(1)焦點(diǎn)在坐標(biāo)軸上,且經(jīng)過點(diǎn)A ( ,-2),B(-2 ,1);
(2)與橢圓 有相同焦點(diǎn)且經(jīng)過點(diǎn)M( ,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知為定義在上的函數(shù),其圖象關(guān)于軸對稱,當(dāng)時(shí),有,且當(dāng)時(shí),,若函數(shù)恰有個(gè)不同的零點(diǎn),則實(shí)數(shù)的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某廠家舉行大型的促銷活動,經(jīng)測算某產(chǎn)品當(dāng)促銷費(fèi)用為x萬元時(shí),銷售量t萬件滿足t=5- (其中0 x a,a為正常數(shù)),現(xiàn)假定生產(chǎn)量與銷售量相等,已知生產(chǎn)該產(chǎn)品t萬件還需投入成本(10+2t)萬元(不含促銷費(fèi)用),產(chǎn)品的銷售價(jià)格定為5+ 萬元/萬件.
(1)將該產(chǎn)品的利潤y萬元表示為促銷費(fèi)用x萬元的函數(shù);
(2)促銷費(fèi)用投入多少萬元時(shí),廠家的利潤最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】偶函數(shù) = 的圖象過點(diǎn) ,且在 處的切線方程為 .求 的解析式.

查看答案和解析>>

同步練習(xí)冊答案