【題目】設(shè)數(shù)列{an}滿足a1=,.(1)證明:數(shù)列為等比數(shù)列,并求數(shù)列{an}的通項(xiàng)公式;(2)設(shè)cn=(3n+1)an,證明:數(shù)列{cn}中任意三項(xiàng)不可能構(gòu)成等差數(shù)列.

【答案】(1);(2)見(jiàn)解析

【解析】

(1)根據(jù)題意,由,構(gòu)造,兩式相除即可得,由等比數(shù)列的定義分析可得答案;(2)用反證法分析:假設(shè)存在正整數(shù),,,使得,,成等差數(shù)列,由等差數(shù)列的定義可得,即,變形可得,分析可得矛盾,即可得證明.

(1)證明:由條件, ,①

,②

a1=an>0, ∴an+1>0.

①/②得, ,

是首項(xiàng)為,公比為的等比數(shù)列.

因此,, ∴ .

(2)證明:由(1)得,cn=(3n+1)an=3n-1,

(反證法)假設(shè)存在正整數(shù)l,m,n1≤l<m<n,使得cl,cm,cn成等差數(shù)列.

span>則2(3m-1)=3l+3n-2,即2·3m=3l+3n,

則有2·3m-l=1+3n-l,即2·3m-l-3n-l=1,

則有3m-l·[2-3n-l-(m-l)]=1,3m-l·(2-3n-m)=1.

,,∴

,矛盾,

故假設(shè)不成立,所以數(shù)列{cn}中任意三項(xiàng)不可能構(gòu)成等差數(shù)列

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某種產(chǎn)品的廣告費(fèi)支出與銷售額 (單位:萬(wàn)元)具有較強(qiáng)的相關(guān)性,且兩者之間有如下對(duì)應(yīng)數(shù)據(jù):

2

4

5

6

8

28

36

52

56

78

(1)求關(guān)于的線性回歸方程;

(2)根據(jù)(1)中的線性回歸方程,當(dāng)廣告費(fèi)支出為10萬(wàn)元時(shí),預(yù)測(cè)銷售額是多少?

參考數(shù)據(jù): ,。

附:回歸方程中斜率和截距的最小二乘估計(jì)公式分別為:

,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某工廠某種產(chǎn)品的年固定成本為250萬(wàn)元,每生產(chǎn)千件,需另投入成本為,當(dāng)年產(chǎn)量不足80千件時(shí),(萬(wàn)元).當(dāng)年產(chǎn)量不小于80千件時(shí)(萬(wàn)元).每件商品售價(jià)為0.05萬(wàn)元.通過(guò)分析,該工廠生產(chǎn)的商品能全部售完.

(1)寫出年利潤(rùn)(萬(wàn)元)關(guān)于年產(chǎn)量(千件)的函數(shù)解析式;

(2)當(dāng)年產(chǎn)量為多少千件時(shí),該廠在這一商品的生產(chǎn)中所獲利潤(rùn)最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線y2=2px(p>0)的準(zhǔn)線為l,若l與圓x2+y2+6x+5=0的交點(diǎn)為A,B,且|AB|=2 .則p的值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)= ,函數(shù)g(x)=f(x)﹣k.
(1)當(dāng)m=2時(shí),若函數(shù)g(x)有兩個(gè)零點(diǎn),則k的取值范圍是;
(2)若存在實(shí)數(shù)k使得函數(shù)g(x)有兩個(gè)零點(diǎn),則m的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的一個(gè)焦點(diǎn)為,離心率為. 點(diǎn)為圓上任意一點(diǎn), 為坐標(biāo)原點(diǎn).

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;

(Ⅱ)記線段與橢圓交點(diǎn)為,求的取值范圍;

(Ⅲ)設(shè)直線經(jīng)過(guò)點(diǎn)且與橢圓相切, 與圓相交于另一點(diǎn),點(diǎn)關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為,試判斷直線與橢圓的位置關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}是等差數(shù)列,{bn}是等比數(shù)列,其中a1=b1=1,a2b2,且b2a1、a2的等差中項(xiàng),a2b2、b3的等差中項(xiàng).

(1)求數(shù)列{an}{bn}的通項(xiàng)公式;

(2),求數(shù)列{cn}的前n項(xiàng)和Sn.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形為正方形,平面.

(1)求證:;

(2)若點(diǎn)在線段上,且滿足,求證:平面;

(3)求證:平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn), 軸正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為為曲線上的動(dòng)點(diǎn),點(diǎn)在線段上,且滿足

1)求點(diǎn)的軌跡的直角坐標(biāo)方程;

2)直線的參數(shù)方程是為參數(shù)),其中 交于點(diǎn),求直線的斜率.

查看答案和解析>>

同步練習(xí)冊(cè)答案