【題目】已知函數(shù)f(x)= ,函數(shù)g(x)=f(x)﹣k.
(1)當(dāng)m=2時,若函數(shù)g(x)有兩個零點(diǎn),則k的取值范圍是;
(2)若存在實(shí)數(shù)k使得函數(shù)g(x)有兩個零點(diǎn),則m的取值范圍是 .
【答案】
(1)(4,8]
(2)(﹣∞,0)∪(1,+∞)
【解析】解:(1)當(dāng)m=2時,分別畫出y=f(x)與y=k的圖象,如圖所示, 若函數(shù)g(x)有兩個零點(diǎn),由圖象可得4<k≤8,
故k的取值范圍是(4,8]
⑵當(dāng)m≥0時,y=x3在(﹣∞,m]為增函數(shù),最大值為m3 ,
y=x2在(m,+∞)為增函數(shù),最小值為m2 ,
若存在實(shí)數(shù)k使得函數(shù)g(x)有兩個零點(diǎn),則m3>m2 , 解得m>1,
當(dāng)m<0時,y=x2在(m,0)上為減函數(shù),在(0,+∞)為增函數(shù),
故若存在實(shí)數(shù)k使得函數(shù)g(x)有兩個零點(diǎn),
綜上所述m的取值范圍為(﹣∞,0)∪(1,+∞),
所以答案是:(1):(4,8],(2):(﹣∞,0)∪(1,+∞)
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某旅游愛好者計(jì)劃從3個亞洲國家和3個歐洲國家中選擇2個國家去旅游.
(Ⅰ)若從這6個國家中任選2個,求這2個國家都是亞洲國家的概率;
(Ⅱ)若從亞洲國家和歐洲國家中各任選1個,求這2個國家包括但不包括的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC三個內(nèi)角A,B,C所對的邊分別為a,b,c,若c2sinA=5sinC,(a+c)2=16+b2 , 則△ABC的面積是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠生產(chǎn)甲、乙兩種產(chǎn)品.已知生產(chǎn)一噸甲產(chǎn)品、一噸乙產(chǎn)品所需要的煤、電以及產(chǎn)值如表所示;又知道國家每天分配給該廠的煤和電力有限制,每天供煤至多56噸,供電至多45千瓦.問該廠如何安排生產(chǎn),才能使該廠日產(chǎn)值最大?最大的產(chǎn)值是多少?
用煤(噸) | 用電(千瓦) | 產(chǎn)值(萬元) | |
生產(chǎn)一噸 甲種產(chǎn)品 | 7 | 2 | 8 |
生產(chǎn)一噸 乙種產(chǎn)品 | 3 | 5 | 11 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,PD垂直正方形ABCD所在平面,AB=2,E是PB的中點(diǎn), , >.
(1)建立適當(dāng)?shù)目臻g坐標(biāo)系,求出點(diǎn)E的坐標(biāo);
(2)在平面PAD內(nèi)求一點(diǎn)F,使EF⊥平面PCB.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列{an}滿足a1=,.(1)證明:數(shù)列為等比數(shù)列,并求數(shù)列{an}的通項(xiàng)公式;(2)設(shè)cn=(3n+1)an,證明:數(shù)列{cn}中任意三項(xiàng)不可能構(gòu)成等差數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列{an}的前n項(xiàng)和為Sn . 若對n∈N* , 總k∈N* , 使得Sn=ak , 則稱數(shù)列{an}是“G數(shù)列”. (Ⅰ)若數(shù)列{an}是等差數(shù)列,其首項(xiàng)a1=1,公差d=﹣1.證明:數(shù)列{an}是“G數(shù)列”;
(Ⅱ)若數(shù)列{an}的前n項(xiàng)和Sn=3n(n∈N*),判斷數(shù)列{an}是否為“G數(shù)列”,并說明理由;
(Ⅲ)證明:對任意的等差數(shù)列{an},總存在兩個“G數(shù)列”{bn}和{cn},使得an=bn+cn(n∈N*)成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)F為拋物線E:x2=4y的焦點(diǎn),直線l為準(zhǔn)線,C為拋物線上的一點(diǎn)(C在第一象限),以點(diǎn)C為圓心,|CF|為半徑的圓與y軸交于D,F(xiàn)兩點(diǎn),且△CDF為正三角形.
(Ⅰ)求圓C的方程;
(Ⅱ)設(shè)P為l上任意一點(diǎn),過P作拋物線x2=4y的切線,切點(diǎn)為A,B,判斷直線AB與圓C的位置關(guān)系.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)y=3tan.
(1)求函數(shù)的最小正周期;
(2)求函數(shù)的定義域;
(3)說明此函數(shù)的圖象是由y=tan x的圖象經(jīng)過怎樣的變換得到的?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com