【題目】將函數(shù)f(x)=sin 2x+cos 2x圖象上所有點(diǎn)的橫坐標(biāo)伸長到原來的2倍(縱坐標(biāo)不變),再將圖象上所有點(diǎn)向右平移個單位長度,得到函數(shù)g(x)的圖象,則g(x)圖象的一條對稱軸方程是( )
A. x=- B. x=
C. x= D. x=
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,某地村莊P與村莊O的距離為千米,從村莊O出發(fā)有兩條道路,經(jīng)測量,的夾角為,OP與的夾角滿足(其中),現(xiàn)要經(jīng)過P修一條直路分別與道路交匯于兩點(diǎn),并在處設(shè)立公共設(shè)施.
(1)已知修建道路的單位造價分別為2m元/千米和m元/千米,若兩段道路的總造價相等,求此時點(diǎn)之間的距離;
(2)考慮環(huán)境因素,需要對段道路進(jìn)行翻修,段的翻修單價分別為n元/千米和元/千米,要使兩段道路的翻修總價最少,試確定點(diǎn)的位置.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) (, 為自然對數(shù)的底數(shù)).
(Ⅰ)求函數(shù)的極值;
(Ⅱ)當(dāng)時,若直線與曲線沒有公共點(diǎn),求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題中,正確的為________(正確序號全部填上)
(1)空間中,一個角的兩邊與另一個角的兩邊分別平行,則這兩個角相等或互補(bǔ);
(2)一個二面角的兩個半平面與另一個二面角的兩個半平面分別垂直,則這兩個二面角相等或互補(bǔ);
(3)直線,為異面直線,所成角的大小為,過空間一點(diǎn)作直線,使l與直線及直線都成相等的角,這樣的直線可作3條;
(4)直線與平面相交,過直線可作唯一的平面與平面垂直.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=A cos(ωx+φ)(A>0,ω>0)的部分圖象如圖所示,下面結(jié)論錯誤的是( )
A. 函數(shù)f(x)的最小正周期為
B. 函數(shù)f(x)的圖象可由g(x)=Acos ωx的圖象向右平移個單位長度得到
C. 函數(shù)f(x)的圖象關(guān)于直線x=對稱
D. 函數(shù)f(x)在區(qū)間上單調(diào)遞增
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解某地區(qū)某種農(nóng)產(chǎn)品的年產(chǎn)量(單位:噸)對價格(單位:千元/噸)和利潤的影響,對近五年該農(nóng)產(chǎn)品的年產(chǎn)量和價格統(tǒng)計如下表:
1 | 2 | 3 | 4 | 5 | |
8 | 6 | 5 | 4 | 2 |
已知和具有線性相關(guān)關(guān)系.
(1)求關(guān)于的線性回歸方程;
(2)若每噸該農(nóng)產(chǎn)品的成本為2.2千元,假設(shè)該農(nóng)產(chǎn)品可全部賣出,預(yù)測當(dāng)年產(chǎn)量為多少噸時,年利潤取到最大值?
參考公式: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若數(shù)列同時滿足條件:①存在互異的使得(為常數(shù));
②當(dāng)且時,對任意都有,則稱數(shù)列為雙底數(shù)列.
(1)判斷以下數(shù)列是否為雙底數(shù)列(只需寫出結(jié)論不必證明);
①; ②; ③
(2)設(shè),若數(shù)列是雙底數(shù)列,求實數(shù)的值以及數(shù)列的前項和;
(3)設(shè),是否存在整數(shù),使得數(shù)列為雙底數(shù)列?若存在,求出所有的的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2018年,在《我是演說家》第四季這檔節(jié)目中,英國華威大學(xué)留學(xué)生游斯彬的“數(shù)學(xué)之美”的演講視頻在微信朋友圈不斷被轉(zhuǎn)發(fā),他的視角獨(dú)特,語言幽默,給觀眾留下了深刻的印象.某機(jī)構(gòu)為了了解觀眾對該演講的喜愛程度,隨機(jī)調(diào)查了觀看了該演講的140名觀眾,得到如下的列聯(lián)表:(單位:名)
男 | 女 | 總計 | |
喜愛 | 40 | 60 | 100 |
不喜愛 | 20 | 20 | 40 |
總計 | 60 | 80 | 140 |
(1)根據(jù)以上列聯(lián)表,問能否在犯錯誤的概率不超過0.05的前提下認(rèn)為觀眾性別與喜愛該演講有關(guān).(精確到0.001)
(2)從這60名男觀眾中按對該演講是否喜愛采取分層抽樣,抽取一個容量為6的樣本,然后隨機(jī)選取兩名作跟蹤調(diào)查,求選到的兩名觀眾都喜愛該演講的概率.
附:臨界值表
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | |
2.705 | 3.841 | 5.024 | 6.635 | 7.879 |
參考公式:,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分12分)某公司為確定下一年度投入某種產(chǎn)品的宣傳費(fèi),需了解年宣傳費(fèi)x(單位:千元)對年銷售量y(單位:t)和年利潤z(單位:千元)的影響,對近8年的宣傳費(fèi)和年銷售量數(shù)據(jù)作了初步處理,得到下面的散點(diǎn)圖及一些統(tǒng)計量的值.
46.6 | 563 | 6.8 | 289.8 | 1.6 | 1469 | 108.8 |
表中=,=
(Ⅰ)根據(jù)散點(diǎn)圖判斷,與
(Ⅱ)根據(jù)(Ⅰ)的判斷結(jié)果及表中數(shù)據(jù),建立y關(guān)于x的回歸方程;
(III)已知這種產(chǎn)品的年利潤z與x,y的關(guān)系為,根據(jù)(Ⅱ)的結(jié)果回答下列問題:
(Ⅰ)當(dāng)年宣傳費(fèi)時,年銷售量及年利潤的預(yù)報值時多少?
(Ⅱ)當(dāng)年宣傳費(fèi)為何值時,年利潤的預(yù)報值最大?
附:對于一組數(shù)據(jù),,……,,其回歸線的斜率和截距的最小二乘估計分別為:
,
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com