【題目】已知函數(shù)f(x)=A cos(ωxφ)(A>0,ω>0)的部分圖象如圖所示,下面結(jié)論錯誤的是(  )

A. 函數(shù)f(x)的最小正周期為

B. 函數(shù)f(x)的圖象可由g(x)=Acos ωx的圖象向右平移個單位長度得到

C. 函數(shù)f(x)的圖象關(guān)于直線x對稱

D. 函數(shù)f(x)在區(qū)間上單調(diào)遞增

【答案】D

【解析】∵由題意可知,此函數(shù)的周期T=2(

∴解得:ω=3,可得:f(x)=Acos(3x+φ).

又∵由題圖可知f()=Acos(3×+φ)=Acos(φ﹣π)=0,

∴利用五點(diǎn)作圖法可得:φ﹣π=,解得:φ=

f(x)=Acos(3x+).

∴令3x+=kπ,kZ,可解得函數(shù)的對稱軸方程為:x=,kZ,

2kπ﹣π3x+2kπ,kZ,可解得: kπ﹣xkπ﹣,kZ,

故函數(shù)的單調(diào)遞增區(qū)間為:[kπ﹣ kπ﹣],kZ.

∴對于A,函數(shù)f(x)的最小周期為,故A正確;

對于B,因?yàn)?/span>g(x)=Acos3x的圖象向右平移個單位得到y=Acos[3(x﹣]=Acos(3x﹣)=Acos(3x﹣)=Acos(3x+)=f(x),故B正確;

對于C,因?yàn)楹瘮?shù)的對稱軸方程為:x=,kZ,令k=2,可得函數(shù)f(x)的圖象關(guān)于直線x=對稱,故C正確;

對于D,因?yàn)楹瘮?shù)的單調(diào)遞增區(qū)間為:[kπ﹣, kπ﹣],kZ,令k=2,可得函數(shù)單調(diào)遞增區(qū)間為:[ ],故函數(shù)f(x)在區(qū)間(, )上不單調(diào)遞增,故D錯誤.

故選:D.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的中心在原點(diǎn),其中一個焦點(diǎn)與拋物線的焦點(diǎn)重合,點(diǎn)在橢圓上.

(1)求橢圓的方程;

(2)設(shè)橢圓的左右焦點(diǎn)分別為,過的直線與橢圓相交于兩點(diǎn),若的面積為,求以為圓心且與直線相切的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】,滿足約束條件,求:

1的最大值.

2的最小值.

3的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲乙兩地相距海里,某貨輪勻速行駛從甲地運(yùn)輸貨物到乙地,運(yùn)輸成本包括燃料費(fèi)用和其他費(fèi)用.已知該貨輪每小時的燃料費(fèi)與其速度的平方成正比,比例系數(shù)為,其他費(fèi)用為每小時元,且該貨輪的最大航行速度為海里/小時.

)請將該貨輪從甲地到乙地的運(yùn)輸成本表示為航行速度(海里/小時)的函數(shù).

)要使從甲地到乙地的運(yùn)輸成本最少,該貨輪應(yīng)以多大的航行速度行駛?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如果雙曲線的離心率e,則稱此雙曲線為黃金雙曲線.有以下幾個命題:①雙曲線是黃金雙曲線;②雙曲線是黃金雙曲線;③在雙曲線 (a>0,b>0)中,F1為左焦點(diǎn),A2為右頂點(diǎn),B1(0,b),若∠F1B1A2=90°,則該雙曲線是黃金雙曲線;④在雙曲線 (a>0,b>0)中,過右焦點(diǎn)F2作實(shí)軸的垂線交雙曲線于M,N兩點(diǎn),O為坐標(biāo)原點(diǎn),若∠MON=120°,則該雙曲線是黃金雙曲線.其中正確命題的序號為________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將函數(shù)f(x)=sin 2xcos 2x圖象上所有點(diǎn)的橫坐標(biāo)伸長到原來的2倍(縱坐標(biāo)不變),再將圖象上所有點(diǎn)向右平移個單位長度,得到函數(shù)g(x)的圖象,則g(x)圖象的一條對稱軸方程是(  )

A. x=- B. x

C. x D. x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示的正四棱柱的底面邊長為側(cè)棱,點(diǎn)在棱上,

().

(1)當(dāng)時,求三棱錐的體積;

(2)當(dāng)異面直線所成角的大小為時,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,曲線 經(jīng)過伸縮變換后得到曲線.以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

(Ⅰ)求出曲線、的參數(shù)方程;

(Ⅱ)若、分別是曲線、上的動點(diǎn),求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某藝術(shù)品公司欲生產(chǎn)一款迎新春工藝禮品,該禮品是由玻璃球面和該球的內(nèi)接圓錐組成,圓錐的側(cè)面用于藝術(shù)裝飾,如圖1.為了便于設(shè)計(jì),可將該禮品看成是由圓及其內(nèi)接等腰三角形繞底邊上的高所在直線旋轉(zhuǎn)180°而成,如圖2.已知圓的半徑為,設(shè),圓錐的側(cè)面積為.

(1)求關(guān)于的函數(shù)關(guān)系式;

(2)為了達(dá)到最佳觀賞效果,要求圓錐的側(cè)面積最大.求取得最大值時腰的長度.

查看答案和解析>>

同步練習(xí)冊答案