【題目】已知函數(shù) (, 為自然對數(shù)的底數(shù)).

(Ⅰ)求函數(shù)的極值;

(Ⅱ)當(dāng)時,若直線與曲線沒有公共點(diǎn),求的最大值.

【答案】(1)見解析(2)的最大值為1.

【解析】試題分析:(1)先求導(dǎo)數(shù),再根據(jù)a的正負(fù)討論導(dǎo)函數(shù)符號變化規(guī)律,最后根據(jù)導(dǎo)函數(shù)符號確定極值,(2)先將無交點(diǎn)轉(zhuǎn)化為方程上沒有實(shí)數(shù)解,轉(zhuǎn)化為上沒有實(shí)數(shù)解,再利用導(dǎo)數(shù)研究取值范圍,即得,即得的取值范圍是,從中確定的最大值.

試題解析:(Ⅰ) ,

①當(dāng)時, 上的增函數(shù),所以函數(shù)無極值.

②當(dāng)時,令,得, .

, ; , .

所以上單調(diào)遞減,在上單調(diào)遞增,

處取得極小值,且極小值為,無極大值.

綜上,當(dāng)時,函數(shù)無極小值;

當(dāng), 處取得極小值,無極大值.

(Ⅱ)當(dāng)時, .

直線與曲線沒有公共點(diǎn),

等價于關(guān)于的方程上沒有實(shí)數(shù)解,即關(guān)于的方程:

上沒有實(shí)數(shù)解.

①當(dāng)時,方程可化為,在上沒有實(shí)數(shù)解.

②當(dāng)時,方程化為.

,則有

,得

當(dāng)變化時, 的變化情況如下表:

-1

-

0

+

當(dāng)時, ,同時當(dāng)趨于時, 趨于,

從而的取值范圍為.

所以當(dāng)時,方程無實(shí)數(shù)解,

解得的取值范圍是.

綜上,得的最大值為1.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線

1)若直線不經(jīng)過第四象限,求的取值范圍;

2)若直線軸負(fù)半軸于點(diǎn),交軸正半軸于點(diǎn),為坐標(biāo)原點(diǎn),設(shè)的面積為,求的最小值及此時直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)有10道題,其中6道甲類題,4道乙類題,張同學(xué)從中任取3道題解答.
(1)求張同學(xué)至少取到1道乙類題的概率;
(2)已知所取的3道題中有2道甲類題,1道乙類題.設(shè)張同學(xué)答對甲類題的概率都是 ,答對每道乙類題的概率都是 ,且各題答對與否相互獨(dú)立.用X表示張同學(xué)答對題的個數(shù),求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面為平行四邊形, ,且底面.

(1)證明:平面平面

(2)若的中點(diǎn),且,求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,角A,B,C所對的邊分別為a,b,c,已知cosC+(cosA﹣ sinA)cosB=0.
(1)求角B的大小;
(2)若a+c=1,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓C1的方程為x2+(y+1)2=4,圓C2的圓心坐標(biāo)為(2,1).

(1)若圓C1與圓C2相交于A,B兩點(diǎn),且|AB|=,求點(diǎn)C1到直線AB的距離;

(2)若圓C1與圓C2相內(nèi)切,求圓C2的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)當(dāng)時,求過點(diǎn)處的切線方程

(2)若函數(shù)有兩個不同的零點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2015年推出一種新型家用轎車,購買時費(fèi)用為16.9萬元,每年應(yīng)交付保險費(fèi)、養(yǎng)路費(fèi)及汽油費(fèi)共1.2萬元,汽車的維修費(fèi)為:第一年無維修費(fèi)用,第二年為0.2萬元,從第三年起,每年的維修費(fèi)均比上一年增加0.2萬元.

(I)設(shè)該輛轎車使用n年的總費(fèi)用(包括購買費(fèi)用、保險費(fèi)、養(yǎng)路費(fèi)、汽油費(fèi)及維修費(fèi))為f(n),求f(n)的表達(dá)式;

(II)這種汽車使用多少報廢最合算(即該車使用多少年,年平均費(fèi)用最少)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)若不等式的解集為,求實(shí)數(shù)的值;

(2)若不等式對一切實(shí)數(shù)恒成立,求實(shí)數(shù)的取值范圍;

查看答案和解析>>

同步練習(xí)冊答案