【題目】已知等差數(shù)列滿足,,數(shù)列的前項(xiàng)和為滿足.
(Ⅰ)求和的通項(xiàng)公式;
(Ⅱ)若,恒成立,求實(shí)數(shù)的取值范圍.
【答案】(Ⅰ),;(Ⅱ).
【解析】
(Ⅰ)根據(jù)題設(shè)條件,列出方程組求得的值,即可得到得出數(shù)列的通項(xiàng)公式,再利用數(shù)列的遞推關(guān)系,得到數(shù)列是首項(xiàng)為1,公比為2的等比數(shù)列,即可求出數(shù)列的通項(xiàng)公式;
(Ⅱ)由(Ⅰ)可得,利用乘公比錯(cuò)位相減法,即可求解.
(Ⅰ)設(shè)等差數(shù)列的公差為,
因?yàn)?/span>,,可得,解得,
所以,
對于數(shù)列,當(dāng)時(shí),,解得.
當(dāng)時(shí),,,
兩式相減,得,即,
所以是以1為首項(xiàng),2為公比的等比數(shù)列,所以.
(Ⅱ)由(Ⅰ)可得.
令,
當(dāng)時(shí),.
當(dāng)時(shí),,
則.
兩式相減,得
,
得,而時(shí)也符合該式,所以,
故題中不等式可化為.(*),
當(dāng)時(shí),不等式(*)可化為,解得;
當(dāng)時(shí),不等式(*)可化為,此時(shí);
當(dāng)時(shí),不等式(*)可化為,因?yàn)閿?shù)列是遞增數(shù)列,所以,
綜上,實(shí)數(shù)的取值范圍是.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】程大位是明代著名數(shù)學(xué)家,他的《新編直指算法統(tǒng)宗》是中國歷史上一部影響巨大的著作.它問世后不久便風(fēng)行宇內(nèi),成為明清之際研習(xí)數(shù)學(xué)者必讀的教材,而且傳到朝鮮、日本及東南亞地區(qū),對推動(dòng)漢字文化圈的數(shù)學(xué)發(fā)展起了重要的作用.卷八中第33問是:“今有三角果一垛,底闊每面七個(gè),問該若干?”如圖是解決該問題的程序框圖.執(zhí)行該程序框圖,求得該垛果子的總數(shù)為( )
A.84B.56C.35D.28
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,等邊三角形所在的平面垂直于底面,, ,是棱的中點(diǎn).
(Ⅰ)求證:平面;
(Ⅱ)求二面角的余弦值;
(Ⅲ)判斷直線與平面的是否平行,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在以ABCDEF為頂點(diǎn)的五面體中,底面ABCD為菱形,∠ABC=120°,AB=AE=ED=2EF,EFAB,點(diǎn)G為CD中點(diǎn),平面EAD⊥平面ABCD.
(1)證明:BD⊥EG;
(2)若三棱錐,求菱形ABCD的邊長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求直線的普通方程和曲線的直角坐標(biāo)方程;
(2)設(shè)點(diǎn),直線與曲線交于兩點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左、右焦點(diǎn)分別為,上頂點(diǎn)為,的面積為1,且橢圓的離心率為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)點(diǎn)在橢圓上且位于第二象限,過點(diǎn)作直線,過點(diǎn)作直線,若直線的交點(diǎn)恰好也在橢圓上,求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校為了解家長對學(xué)校食堂的滿意情況,分別從高一、高二年級隨機(jī)抽取了20位家長的滿意度評分,其頻數(shù)分布表如下:
滿意度評分分組 | 合計(jì) | |||||
高一 | 1 | 3 | 6 | 6 | 4 | 20 |
高二 | 2 | 6 | 5 | 5 | 2 | 20 |
根據(jù)評分,將家長的滿意度從低到高分為三個(gè)等級:
滿意度評分 | 評分70分 | 70評分90 | 評分90分 |
滿意度等級 | 不滿意 | 滿意 | 非常滿意 |
假設(shè)兩個(gè)年級家長的評價(jià)結(jié)果相互獨(dú)立,根據(jù)所給數(shù)據(jù),以事件發(fā)生的頻率作為相應(yīng)事件發(fā)生的概率.現(xiàn)從高一、高二年級各隨機(jī)抽取1名家長,記事件:“高一家長的滿意度等級高于高二家長的滿意度等級”,則事件發(fā)生的概率為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本題滿分13分)
某食品廠進(jìn)行蘑菇的深加工,每公斤蘑菇的成本20元,并且每公斤蘑菇的加工費(fèi)為元(為常數(shù),且,設(shè)該食品廠每公斤蘑菇的出廠價(jià)為元(),根據(jù)市場調(diào)查,銷售量與成反比,當(dāng)每公斤蘑菇的出廠價(jià)為30元時(shí),日銷售量為100公斤.
(Ⅰ)求該工廠的每日利潤元與每公斤蘑菇的出廠價(jià)元的函數(shù)關(guān)系式;
(Ⅱ)若,當(dāng)每公斤蘑菇的出廠價(jià)為多少元時(shí),該工廠的利潤最大,并求最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)
(1)若函數(shù)在上遞增,在上遞減,求實(shí)數(shù)的值.
(2))討論在上的單調(diào)性;
(3)若方程有兩個(gè)不等實(shí)數(shù)根,求實(shí)數(shù)的取值范圍,并證明.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com