【題目】某校為了解家長(zhǎng)對(duì)學(xué)校食堂的滿(mǎn)意情況,分別從高一、高二年級(jí)隨機(jī)抽取了20位家長(zhǎng)的滿(mǎn)意度評(píng)分,其頻數(shù)分布表如下:
滿(mǎn)意度評(píng)分分組 | 合計(jì) | |||||
高一 | 1 | 3 | 6 | 6 | 4 | 20 |
高二 | 2 | 6 | 5 | 5 | 2 | 20 |
根據(jù)評(píng)分,將家長(zhǎng)的滿(mǎn)意度從低到高分為三個(gè)等級(jí):
滿(mǎn)意度評(píng)分 | 評(píng)分70分 | 70評(píng)分90 | 評(píng)分90分 |
滿(mǎn)意度等級(jí) | 不滿(mǎn)意 | 滿(mǎn)意 | 非常滿(mǎn)意 |
假設(shè)兩個(gè)年級(jí)家長(zhǎng)的評(píng)價(jià)結(jié)果相互獨(dú)立,根據(jù)所給數(shù)據(jù),以事件發(fā)生的頻率作為相應(yīng)事件發(fā)生的概率.現(xiàn)從高一、高二年級(jí)各隨機(jī)抽取1名家長(zhǎng),記事件:“高一家長(zhǎng)的滿(mǎn)意度等級(jí)高于高二家長(zhǎng)的滿(mǎn)意度等級(jí)”,則事件發(fā)生的概率為__________.
【答案】0.42
【解析】
高一家長(zhǎng)的滿(mǎn)意度等級(jí)高于高二家長(zhǎng)的滿(mǎn)意度等級(jí)有三種情況,分別求出三種情況的概率,再利用加法公式即可.
由已知,高一家長(zhǎng)滿(mǎn)意等級(jí)為不滿(mǎn)意的概率為,滿(mǎn)意的概率為,非常滿(mǎn)意的概率為,
高二家長(zhǎng)滿(mǎn)意等級(jí)為不滿(mǎn)意的概率為,滿(mǎn)意的概率為,非常滿(mǎn)意的概率為,
高一家長(zhǎng)的滿(mǎn)意度等級(jí)高于高二家長(zhǎng)的滿(mǎn)意度等級(jí)有三種情況:
1.高一家長(zhǎng)滿(mǎn)意,高二家長(zhǎng)不滿(mǎn)意,其概率為;
2.高一家長(zhǎng)非常滿(mǎn)意,高二家長(zhǎng)不滿(mǎn)意,其概率為;
3.高一家長(zhǎng)非常滿(mǎn)意,高二家長(zhǎng)滿(mǎn)意,其概率為.
由加法公式,知事件發(fā)生的概率為.
故答案為:
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓:過(guò)點(diǎn),過(guò)坐標(biāo)原點(diǎn)作兩條互相垂直的射線與橢圓分別交于,兩點(diǎn).
(1)證明:當(dāng)取得最小值時(shí),橢圓的離心率為.
(2)若橢圓的焦距為2,是否存在定圓與直線總相切?若存在,求定圓的方程;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知等差數(shù)列滿(mǎn)足,,數(shù)列的前項(xiàng)和為滿(mǎn)足.
(Ⅰ)求和的通項(xiàng)公式;
(Ⅱ)若,恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),其中.
(Ⅰ)討論函數(shù)的單調(diào)性;
(Ⅱ)已知,,設(shè)函數(shù)的最大值為,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的短軸長(zhǎng)為,左右焦點(diǎn)分別為,,點(diǎn)是橢圓上位于第一象限的任一點(diǎn),且當(dāng)時(shí),.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若橢圓上點(diǎn)與點(diǎn)關(guān)于原點(diǎn)對(duì)稱(chēng),過(guò)點(diǎn)作垂直于軸,垂足為,連接并延長(zhǎng)交于另一點(diǎn),交軸于點(diǎn).
(ⅰ)求面積最大值;
(ⅱ)證明:直線與斜率之積為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知過(guò)點(diǎn)A(0,1)且斜率為k的直線l與圓C:(x-2)2+(y-3)2=1交于M,N兩點(diǎn).
(1)求k的取值范圍;
(2)若=12,其中O為坐標(biāo)原點(diǎn),求|MN|.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若正整數(shù)數(shù)列,滿(mǎn)足:對(duì)任意,,都有恒成立,則稱(chēng)數(shù)列,為“友好數(shù)列”.
(1)已知數(shù)列,的通項(xiàng)公式分別為,,求證:數(shù)列,為“友好數(shù)列”;
(2)已知數(shù)列,為“友好數(shù)列”,且,求證:“數(shù)列是等差數(shù)列” 是“數(shù)列是等比數(shù)列”的充分不必要條件.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,設(shè)A是由個(gè)實(shí)數(shù)組成的n行n列的數(shù)表,其中aij (i,j=1,2,3,…,n)表示位于第i行第j列的實(shí)數(shù),且aij{1,-1}.記S(n,n)為所有這樣的數(shù)表構(gòu)成的集合.對(duì)于,記ri (A)為A的第i行各數(shù)之積,cj (A)為A的第j列各數(shù)之積.令
a11 | a12 | … | a1n |
a21 | a22 | a2n | |
… | … | … | … |
an1 | an2 | … | ann |
(Ⅰ)請(qǐng)寫(xiě)出一個(gè)AS(4,4),使得l(A)=0;
(Ⅱ)是否存在AS(9,9),使得l(A)=0?說(shuō)明理由;
(Ⅲ)給定正整數(shù)n,對(duì)于所有的AS(n,n),求l(A)的取值集合.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com