【題目】已知在數(shù)列{an}中,Sn為其前n項和,若an>0,且4Sn=an2+2an+1(n∈N*),數(shù)列{bn}為等比數(shù)列,公比q>1,b1=a1,且2b2,b4,3b3成等差數(shù)列.

(1)求{an}與{bn}的通項公式;

(2)令cn= ,若{cn}的前項和為Tn,求證:Tn<6.

【答案】(1)(2)見解析

【解析】試題分析:(1)先根據(jù)得遞推關系,化簡得 ,根據(jù)等差數(shù)列定義及通項公式得 ,由待定系數(shù)法求數(shù)列{bn}公比為2,再根據(jù)等比數(shù)列通項公式求bn=2n-1(2)利用錯位相減法求和 ,再證結論;利用錯位相減法求和時,注意相減時項的符號變化,中間部分利用等比數(shù)列求和時注意項數(shù),最后要除以

試題解析:解:(1)由4Sn=an2+2an+1(n∈N*),n=1時,4a1=+2a1+1,解得a1=1.

n≥2時,4Sn-1=+2an-1+1,相減可得:4an=-,化為:(an+an-1)(an-an-1-2)=0,

an>0,∴an-an-1-2=0,即an-an-1=2,

∴數(shù)列{an}是等差數(shù)列,公差為2. ∴an=1+2(n-1)=2n-1.

b1=a1=1,∵2b2,b4,3b3成等差數(shù)列.

∴2b4=2b2+3b3.∴=2b2+3b2q,化為:2q2-3q-2=0,q>1,解得q=2.

bn=2n-1

(2)證明:cn==

{cn}的前項和為Tn=1++…+Tn=+…++,

Tn=1+2-=1+2×-,

∴Tn=6-<6.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)為常數(shù),是自然對數(shù)的底數(shù),曲線在點處的切線與軸平行

1的值

2的單調區(qū)間;

3,其中的導函數(shù)證明:對任意

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,正四面體的頂點、分別在兩兩垂直的三條射線, , 上,則在下列命題中,錯誤的是( )

A. 是正三棱錐

B. 直線與平面相交

C. 直線與平面所成的角的正弦值為

D. 異面直線所成角是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓,直線.

(1)若直線與圓交于不同的兩點,當時,求的值.

(2)若是直線上的動點,過作圓的兩條切線,切點為,究:直線是否過定點;

(3)若為圓的兩條相互垂直的弦,垂足為,求四邊形的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某同學用“五點法”畫函數(shù)f(x)=Asin(ωx+φ)(ω>0,|φ|<)在某一個周期內的圖象時,列表并填入了部分數(shù)據(jù),如表:

(1)請將上表數(shù)據(jù)補充完整,并直接寫出函數(shù)f(x)的解析式.

(2)將y=f(x)圖象上所有點向左平行移動θ(θ>0)個單位長度,得到y(tǒng)=g(x)的圖象.若y=g(x)圖象的一個對稱中心為,求θ的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,在四棱錐P-ABCD中,底面ABCD是棱長為2的正方形,側面PAD為正三角形,且面PAD⊥面ABCD,E、F分別為棱AB、PC的中點.

(1)求證:EF∥平面PAD;

(2)求三棱錐B-EFC的體積;

(3)求二面角P-EC-D的正切值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校學生社團心理學研究小組在對學生上課注意力集中情況的調查研究中,發(fā)現(xiàn)其在40分鐘的一節(jié)課中,注意力指數(shù)與聽課時間(單位:分鐘)之間的關系滿足如圖所示的曲線.當時,曲線是二次函數(shù)圖象的一部分,當時,曲線是函數(shù)圖象的一部分.根據(jù)專家研究,當注意力指數(shù)大于80時學習效果最佳.

(1)試求的函數(shù)關系式;

(2)教師在什么時段內安排核心內容,能使得學生學習效果最佳?請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知ABC是銳角三角形,cos22A+sin2A=1.

)求角A;

)若BC=1,B=x,求ABC的周長f(x)的單調區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)的導函數(shù)為.

(1)當時,求函數(shù)的單調區(qū)間;

(2)若對滿足的一切的值,都有,求實數(shù)的取值范圍;

(3)若對一切恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習冊答案