已知函數(shù),且
(1)求實(shí)數(shù)c的值;
(2)解不等式

解:(1)因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/9e/f/1ev3u3.gif" style="vertical-align:middle;" />,所以,         …………(3分)
得:             ……(7分)
2)由          ……(10分)
        ……………(13分)
所以,不等式的解集為 

解析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)函數(shù)
(I)當(dāng)時(shí),求函數(shù)的定義域;
(II)若函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/a0/c/w2tuj.gif" style="vertical-align:middle;" />,試求的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知定義在實(shí)數(shù)集上的偶函數(shù)在區(qū)間上是單調(diào)增函數(shù).
(1)試寫(xiě)出滿足上述條件的一個(gè)函數(shù);
(2)若,求的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,有一塊半橢圓形鋼板,其長(zhǎng)半軸長(zhǎng)為,短半軸長(zhǎng)為,計(jì)劃將此鋼板切割成等腰梯形的形狀,下底AB是半橢圓的短軸,上底CD的端點(diǎn)在橢圓上,記,梯形面積為S.
(1)求面積S以為自變量的函數(shù)式,并寫(xiě)出其定義域;
(2)求面積S的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿分12分)已知是定義在上的奇函數(shù),且時(shí),
(1)求,
(2)求函數(shù)的表達(dá)式;
(3)若,求的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿分14分,第(1)小題7分,第(2)小題7分)
某地發(fā)生特大地震和海嘯,使當(dāng)?shù)氐淖詠?lái)水受到了污染,某部門對(duì)水質(zhì)檢測(cè)后,決定往水中投放一種藥劑來(lái)凈化水質(zhì)。已知每投放質(zhì)量為的藥劑后,經(jīng)過(guò)天該藥劑在水中釋放的濃度(毫克/升) 滿足,其中,當(dāng)藥劑在水中釋放的濃度不低于(毫克/升)時(shí)稱為有效凈化;當(dāng)藥劑在水中釋放的濃度不低于(毫克/升) 且不高于10(毫克/升)時(shí)稱為最佳凈化。
(1)如果投放的藥劑質(zhì)量為,試問(wèn)自來(lái)水達(dá)到有效凈化一共可持續(xù)幾天?
(2)如果投放的藥劑質(zhì)量為,為了使在7天之內(nèi)(從投放藥劑算起包括7天)的自來(lái)水達(dá)到最佳凈化,試確定應(yīng)該投放的藥劑質(zhì)量的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(1)計(jì)算:
(2)已知,求的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

某商家經(jīng)銷一種銷售成本為每千克40元的水產(chǎn)品,據(jù)市場(chǎng)分析,若按每千克50元銷售,一個(gè)月能售出500kg;銷售單價(jià)每漲1元,月銷售量就減少10kg,針對(duì)這種銷售情況,
(1)設(shè)銷售單價(jià)為每千克x元,月銷售利潤(rùn)為y元,求y與x的函數(shù)關(guān)系式;
商店想在月銷售成本不超過(guò)10000元的情況下,使得月銷售利潤(rùn)不少于8000元,銷售單價(jià)應(yīng)定為多少元時(shí),利潤(rùn)最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿分14分)若定義在上的函數(shù)同時(shí)滿足下列三個(gè)條件:
①對(duì)任意實(shí)數(shù)均有成立;
;
③當(dāng)時(shí),都有成立。
(1)求的值;
(2)求證:上的增函數(shù)
(3)求解關(guān)于的不等式.

查看答案和解析>>

同步練習(xí)冊(cè)答案