【題目】已知曲線C: + =1,直線l: (t為參數(shù))
(1)寫出曲線C的參數(shù)方程,直線l的普通方程.
(2)過曲線C上任意一點P作與l夾角為30°的直線,交l于點A,求|PA|的最大值與最小值.
【答案】
(1)解:對于曲線C: + =1,可令x=2cosθ、y=3sinθ,
故曲線C的參數(shù)方程為 ,(θ為參數(shù)).
對于直線l: ,
由①得:t=x﹣2,代入②并整理得:2x+y﹣6=0;
(2)解:設曲線C上任意一點P(2cosθ,3sinθ).
P到直線l的距離為 .
則 ,其中α為銳角.
當sin(θ+α)=﹣1時,|PA|取得最大值,最大值為 .
當sin(θ+α)=1時,|PA|取得最小值,最小值為 .
【解析】(1)聯(lián)想三角函數(shù)的平方關系可取x=2cosθ、y=3sinθ得曲線C的參數(shù)方程,直接消掉參數(shù)t得直線l的普通方程;(2)設曲線C上任意一點P(2cosθ,3sinθ).由點到直線的距離公式得到P到直線l的距離,除以sin30°進一步得到|PA|,化積后由三角函數(shù)的范圍求得|PA|的最大值與最小值.
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,以O為極點,x軸的正半軸為極軸建立極坐標系,曲線C的參數(shù)方程為 (α為參數(shù),α∈[0,π]),直線l的極坐標方程為 .
(1)寫出曲線C的普通方程和直線l的直角坐標方程;
(2)P為曲線C上任意一點,Q為直線l任意一點,求|PQ|的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在5件產品中,有3件一等品和2件二等品,從中任取2件,以為概率的事件是( )
A. 恰有1件一等品 B. 至少有一件一等品
C. 至多有一件一等品 D. 都不是一等品
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某百貨公司1~6月份的銷售量與利潤的統(tǒng)計數(shù)據(jù)如表:
月份 | 1 | 2 | 3 | 4 | 5 | 6 |
銷售量x/萬件 | 10 | 11 | 13 | 12 | 8 | 6 |
利潤y/萬元 | 22 | 25 | 29 | 26 | 16 | 12 |
(1)根據(jù)2~5月份的統(tǒng)計數(shù)據(jù),求出y關于x的回歸直線方程x+;
(2)若由回歸直線方程得到的估計數(shù)據(jù)與剩下的檢驗數(shù)據(jù)的誤差均不超過2萬元,則認為得到的回歸直線方程是理想的,試問所得回歸直線方程是否理想?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】甲、乙兩人都準備于下午12:00-13:00之間到某車站乘某路公交車外出,設在12:00-13:00之間有四班該路公交車開出,已知開車時間分別為12:20,12:30,12:40,13:00,分別求他們在下述情況下坐同一班車的概率.
(1)他們各自選擇乘坐每一班車是等可能的;
(2)他們各自到達車站的時刻是等可能的(有車就乘).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四棱錐,側面是邊長為2的正三角形,且與底面垂直,底面是的菱形,為的中點.
(1)在棱上是否存在一點,使得,,,四點共面?若存在,指出點的位置并說明;若不存在,請說明理由;
(2)求點平面的距離.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】等比數(shù)列{an}的各項均為正數(shù),且2a1+3a2=1, =9a2a6.
(1)求數(shù)列{an}的通項公式;
(2)設bn=log3a1+log3a2+…+log3an,求數(shù)列的前n項和.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下面是李強同學數(shù)學作業(yè)本上的一道題,請你幫他完成下面的題目.
(題目)求函數(shù)f(x)=,x∈R,在x=0,1,2處的函數(shù)值和值域
(解答)(一)計算f(0)、f(1)、f(2).
(二)總結:容易看出,這個函數(shù)當x=0時,有最大值__________,當自變量x的絕對值逐漸__________(選填“變大”或“變小”)時,函數(shù)值逐漸變小并趨向于0,但__________(選填“永遠不會”或“可能會”)等于0,于是可知該函數(shù)的值域為集合:
{y|y=f(x),__________}=____________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,直四棱柱ABCD﹣A1B1C1D1內接于半徑為 的半球O,四邊形ABCD為正方形,則該四棱柱的體積最大時,AB的長是( )
A.1
B.
C.
D.2
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com