【題目】某百貨公司1~6月份的銷(xiāo)售量與利潤(rùn)的統(tǒng)計(jì)數(shù)據(jù)如表:

月份

1

2

3

4

5

6

銷(xiāo)售量x/萬(wàn)件

10

11

13

12

8

6

利潤(rùn)y/萬(wàn)元

22

25

29

26

16

12

(1)根據(jù)2~5月份的統(tǒng)計(jì)數(shù)據(jù),求出y關(guān)于x的回歸直線(xiàn)方程x+;

(2)若由回歸直線(xiàn)方程得到的估計(jì)數(shù)據(jù)與剩下的檢驗(yàn)數(shù)據(jù)的誤差均不超過(guò)2萬(wàn)元,則認(rèn)為得到的回歸直線(xiàn)方程是理想的,試問(wèn)所得回歸直線(xiàn)方程是否理想?

【答案】(1)x-(2) 該小組所得線(xiàn)性回歸方程是理想的.

【解析】試題分析:(1)直接根據(jù)線(xiàn)性回歸方程的公式進(jìn)行計(jì)算.(2)利用求出的線(xiàn)性回歸方程檢驗(yàn)預(yù)測(cè)值與實(shí)際值的差是否不超過(guò)2萬(wàn)元.

解析:(1)根據(jù)表中2~5月份的數(shù)據(jù),計(jì)算得

,,所以,.故 關(guān)于的回歸直線(xiàn)方程為:.

(2)當(dāng)時(shí),,此時(shí);當(dāng) 時(shí),,此時(shí) .故所得的回歸直線(xiàn)方程是理想的.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列 ,,,具有性質(zhì)對(duì)任意,,兩數(shù)中至少有一個(gè)是該數(shù)列中的一項(xiàng),現(xiàn)給出以下四個(gè)命題:

數(shù)列,具有性質(zhì); 數(shù)列,,,具有性質(zhì);

若數(shù)列具有性質(zhì),則;④若數(shù)列,,具有性質(zhì),則.其中真命題有(

A. ①③④ B. ②③④ C. ②③ D. ②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓 + =1(a>b>0)的離心率為 ,過(guò)橢圓上一點(diǎn)M作直線(xiàn)MA,MB交橢圓于A,B兩點(diǎn),且斜率分別為k1 , k2 , 若點(diǎn)A,B關(guān)于原點(diǎn)對(duì)稱(chēng),則k1k2的值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線(xiàn)l經(jīng)過(guò)拋物線(xiàn)y2=6x的焦點(diǎn)F,且與拋物線(xiàn)相交于A,B兩點(diǎn).

(1)若直線(xiàn)l的傾斜角為60°,求|AB|的值;

(2)|AB|=9,求線(xiàn)段AB的中點(diǎn)M到準(zhǔn)線(xiàn)的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4﹣4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)xOy中,圓C1:x2+y2=4,圓C2:(x﹣2)2+y2=4.
(1)在以O(shè)為極點(diǎn),x軸正半軸為極軸的極坐標(biāo)系中,分別寫(xiě)出圓C1 , C2的極坐標(biāo)方程,并求出圓C1 , C2的交點(diǎn)坐標(biāo)(用極坐標(biāo)表示);
(2)求圓C1與C2的公共弦的參數(shù)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線(xiàn)l的參數(shù)方程為 (t為參數(shù)),圓C的參數(shù)方程為 (θ為常數(shù)).
(1)求直線(xiàn)l和圓C的普通方程;
(2)若直線(xiàn)l與圓C有公共點(diǎn),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知曲線(xiàn)C: + =1,直線(xiàn)l: (t為參數(shù))
(1)寫(xiě)出曲線(xiàn)C的參數(shù)方程,直線(xiàn)l的普通方程.
(2)過(guò)曲線(xiàn)C上任意一點(diǎn)P作與l夾角為30°的直線(xiàn),交l于點(diǎn)A,求|PA|的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市為增強(qiáng)市民的環(huán)境保護(hù)意識(shí),面向全市征召義務(wù)宣傳志愿者.現(xiàn)從符合條件的志愿者中隨機(jī)抽取100名按年齡分組:第,第,第,第,第,得到的頻率分布直方圖如圖所示.

(1)若從第3,4,5組中用分層抽樣的方法抽取6名志愿者參加廣場(chǎng)的宣傳活動(dòng),應(yīng)從第3,4,5組各抽取多少名志愿者?

(2)在(1)的條件下,該市決定在第3,4組的志愿者中隨機(jī)抽取2名志愿者介紹宣傳經(jīng)驗(yàn),求第4組至少有一名志愿者被抽中的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】己知在平面直角坐標(biāo)系,的參數(shù)方程為 (為參數(shù))以軸為極軸, 為極點(diǎn)建立極坐標(biāo)系,在該極坐標(biāo)系下,圓是以點(diǎn)為圓心,且過(guò)點(diǎn)的圓心.

(1)求圓及圓在平而直角坐標(biāo)系下的直角坐標(biāo)方程;

(2)求圓上任一點(diǎn)與圓上任一點(diǎn)之間距離的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案