【題目】己知在平面直角坐標系,的參數(shù)方程為 (為參數(shù))以軸為極軸 為極點建立極坐標系,在該極坐標系下,圓是以點為圓心,且過點的圓心.

(1)求圓及圓在平而直角坐標系下的直角坐標方程;

(2)求圓上任一點與圓上任一點之間距離的最小值.

【答案】(1)圓M: 圓N: ;(2).

【解析】試題分析

1)將圓M的參數(shù)方程消去參數(shù)可得直角坐標方程;把點化為直角坐標可得圓N的圓心和圓N上的一點,從而可得半徑,進而可求得圓的方程。(2由于兩圓相離,故兩圓上的兩點間的距離的最小值為圓心距減去兩半徑之和。

試題解析

1)將方程消去參數(shù)可得,

所以圓M的方程為。

的直角坐標分別為,

所以圓N的圓心為半徑為,

故圓N的方程為。

21得圓M,N的圓心距為

,

所以圓上任一點與圓上任一點之間距離的最小值為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某大學(xué)為調(diào)研學(xué)生在, 兩家餐廳用餐的滿意度,從在 兩家餐廳都用過餐的學(xué)生中隨機抽取了100人,每人分別對這兩家餐廳進行評分,滿分均為60分.

整理評分數(shù)據(jù),將分數(shù)以10為組距分成6組: , , , , , ,得到餐廳分數(shù)的頻率分布直方圖,和餐廳分數(shù)的頻數(shù)分布表:

定義學(xué)生對餐廳評價的“滿意度指數(shù)”如下:

分數(shù)

滿意度指數(shù)

(Ⅰ)在抽樣的100人中,求對餐廳評價“滿意度指數(shù)”為0的人數(shù);

(Ⅱ)從該校在 兩家餐廳都用過餐的學(xué)生中隨機抽取1人進行調(diào)查,試估計其對餐廳評價的“滿意度指數(shù)”比對餐廳評價的“滿意度指數(shù)”高的概率;

(Ⅲ)如果從, 兩家餐廳中選擇一家用餐,你會選擇哪一家?說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司生產(chǎn)電飯煲,每年需投入固定成本40萬元,每生產(chǎn)1萬件還需另投入16萬元的變動成本,設(shè)該公司一年內(nèi)共生產(chǎn)電飯煲萬件并全部銷售完,每一萬件的銷售收入為萬元,且),該公司在電飯煲的生產(chǎn)中所獲年利潤為(萬元),(注:利潤=銷售收入-成本)

1寫出年利潤(萬元)關(guān)于年產(chǎn)量(萬件)的函數(shù)解析式,并求年利潤的最大值;

2為了讓年利潤不低于2360萬元,求年產(chǎn)量的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)(其中是自然對數(shù)的底數(shù)),,.

(1)記函數(shù),且,求的單調(diào)增區(qū)間;

(2)若對任意,,均有成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在棱臺中, 分別是棱長為1與2的正三角形,平面平面,四邊形為直角梯形, , 中點, , ).

(1)設(shè)中點為 ,求證: 平面

(2)若到平面的距離為,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB⊥平面ACD,DE⊥平面ACD,△ACD為等邊三角形,AD=DE=2AB,F(xiàn)為CD的中點.
(1)求證:AF∥平面BCE;
(2)求證:平面BCE⊥平面CDE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國是世界上嚴重缺水的國家,某市政府為了鼓勵居民節(jié)約用水,計劃調(diào)整居民生活用水收費方案,擬確定一個合理的月用水量標準(噸),一位居民的月用水量不超過的部分按平價收費,超過的部分按議價收費.為了了解居民用水情況,通過抽樣,獲得了某年100位居民每人的月均用水量(單位:噸),將數(shù)據(jù)按照, , 分成9組,制成了如圖所示的頻率分布直方圖.

(Ⅰ)求直方圖中的值;

(Ⅱ)若將頻率視為概率,從該城市居民中隨機抽取3人,記這3人中月均用水量不低于3噸的人數(shù)為,求的分布列與數(shù)學(xué)期望.

(Ⅲ)若該市政府希望使85%的居民每月的用水量不超過標準(噸),估計的值(精確到0.01),并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,平面平面,四邊形是菱形, .

(1)求證: ;

(2)若,且直線與平面所成角為,求二面角的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在某大學(xué)自主招生的面試中,考生要從規(guī)定的6道科學(xué)題,4道人文題共10道題中,隨機抽取3道作答,每道題答對得10分,答錯或不答扣5分,已知甲、乙兩名考生參加面試,甲只能答對其中的6道科學(xué)題,乙答對每道題的概率都是,每個人答題正確與否互不影響.

(1)求考生甲得分的分布列和數(shù)學(xué)期望;

(2)求甲,乙兩人中至少有一人得分不少于15分的概率.

查看答案和解析>>

同步練習(xí)冊答案