【題目】我國是世界上嚴(yán)重缺水的國家,某市政府為了鼓勵居民節(jié)約用水,計劃調(diào)整居民生活用水收費(fèi)方案,擬確定一個合理的月用水量標(biāo)準(zhǔn)(噸),一位居民的月用水量不超過的部分按平價收費(fèi),超過的部分按議價收費(fèi).為了了解居民用水情況,通過抽樣,獲得了某年100位居民每人的月均用水量(單位:噸),將數(shù)據(jù)按照, , , 分成9組,制成了如圖所示的頻率分布直方圖.
(Ⅰ)求直方圖中的值;
(Ⅱ)若將頻率視為概率,從該城市居民中隨機(jī)抽取3人,記這3人中月均用水量不低于3噸的人數(shù)為,求的分布列與數(shù)學(xué)期望.
(Ⅲ)若該市政府希望使85%的居民每月的用水量不超過標(biāo)準(zhǔn)(噸),估計的值(精確到0.01),并說明理由.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的通項為an , 前n項和為sn , 且an是sn與2的等差中項,數(shù)列{bn}中,b1=1,點(diǎn)P(bn , bn+1)在直線x﹣y+2=0上. (Ⅰ)求數(shù)列{an}、{bn}的通項公式an , bn
(Ⅱ)設(shè){bn}的前n項和為Bn , 試比較 與2的大。
(Ⅲ)設(shè)Tn= ,若對一切正整數(shù)n,Tn<c(c∈Z)恒成立,求c的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=2x﹣cosx,{an}是公差為 的等差數(shù)列,f(a1)+f(a2)+…+f(a5)=5π,則[f(a3)]2﹣a1a5=( )
A.0
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】己知在平面直角坐標(biāo)系中,圓的參數(shù)方程為 (為參數(shù))以軸為極軸, 為極點(diǎn)建立極坐標(biāo)系,在該極坐標(biāo)系下,圓是以點(diǎn)為圓心,且過點(diǎn)的圓心.
(1)求圓及圓在平而直角坐標(biāo)系下的直角坐標(biāo)方程;
(2)求圓上任一點(diǎn)與圓上任一點(diǎn)之間距離的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓,過點(diǎn)作直線交圓于兩點(diǎn),分別過兩點(diǎn)作圓的切線,當(dāng)兩條切線相交于點(diǎn)時,則點(diǎn)的軌跡方程為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4 坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,圓,曲線的參數(shù)方程為為參數(shù)),并以為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系.
(1)寫出的極坐標(biāo)方程,并將化為普通方程;
(2)若直線的極坐標(biāo)方程為與相交于兩點(diǎn),
求的面積(為圓的圓心).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】教育學(xué)家分析發(fā)現(xiàn)加強(qiáng)語文樂隊理解訓(xùn)練與提高數(shù)學(xué)應(yīng)用題得分率有關(guān),某校興趣小組為了驗證這個結(jié)論,從該校選擇甲乙兩個同軌班級進(jìn)行試驗,其中甲班加強(qiáng)閱讀理解訓(xùn)練,乙班常規(guī)教學(xué)無額外訓(xùn)練,一段時間后進(jìn)行數(shù)學(xué)應(yīng)用題測試,統(tǒng)計數(shù)據(jù)情況如下面的列聯(lián)表(單位:人)
(1)能夠據(jù)此判斷有97.5%把握熱內(nèi)加強(qiáng)語文閱讀訓(xùn)練與提高數(shù)學(xué)應(yīng)用題得分率有關(guān)?
(2)經(jīng)過多次測試后,小明正確解答一道數(shù)學(xué)應(yīng)用題所用的時間在5—7分鐘,小剛正確解得一道數(shù)學(xué)應(yīng)用題所用的時間在6—8分鐘,現(xiàn)小明、小剛同時獨(dú)立解答同一道數(shù)學(xué)應(yīng)用題,求小剛比小明現(xiàn)正確解答完的概率;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)(為自然對數(shù)的底數(shù)),, .
(1)若是的極值點(diǎn),且直線分別與函數(shù)和的圖象交于,求兩點(diǎn)間的最短距離;
(2)若時,函數(shù)的圖象恒在的圖象上方,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量,向量,函數(shù).
(1)求的單調(diào)減區(qū)間;
(2)將函數(shù)圖象上所有點(diǎn)的橫坐標(biāo)伸長到原來的2倍(縱坐標(biāo)不變),再把得到的圖象向左平移個單位長度,得到的圖象,求函數(shù)的解析式及其圖象的對稱中心.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com