【題目】“累積凈化量()”是空氣凈化器質(zhì)量的一個(gè)重要衡量指標(biāo),它是指空氣凈化器從開始使用到凈化效率為時(shí)對顆粒物的累積凈化量,以克表示.根據(jù)《空氣凈化器》國家標(biāo)準(zhǔn),對空氣凈化器的累計(jì)凈化量()有如下等級劃分:
累積凈化量(克) | 12以上 | |||
等級 |
為了了解一批空氣凈化器(共2000臺)的質(zhì)量,隨機(jī)抽取臺機(jī)器作為樣本進(jìn)行估計(jì),已知這臺機(jī)器的累積凈化量都分布在區(qū)間中.按照均勻分組,其中累積凈化量在的所有數(shù)據(jù)有: 和,并繪制了如下頻率分布直方圖:
(1)求的值及頻率分布直方圖中的值;
(2)以樣本估計(jì)總體,試估計(jì)這批空氣凈化器(共2000臺)中等級為的空氣凈化器有多少臺?
(3)從累積凈化量在的樣本中隨機(jī)抽取2臺,求恰好有1臺等級為的概率.
【答案】(1)(2)這批空氣凈化器等級為的空氣凈化器共有560臺. (3)
【解析】【試題分析】(1)依據(jù)頻率分布直方圖分析求解;(2)依據(jù)題設(shè)借助頻率分布直方圖求解;(3)運(yùn)用列舉法及古典概型的計(jì)算公式分析求解:
(Ⅰ)因?yàn)?/span>之間的數(shù)據(jù)一共有6個(gè),
再由頻率分布直方圖可知:落在之間的頻率為.
因此, .
∴.
(Ⅱ)由頻率分布直方圖可知:落在之間共: 臺,
又因?yàn)樵?/span>之間共4臺,
∴落在之間共28臺,
故,這批空氣凈化器等級為的空氣凈化器共有560臺.
(Ⅲ)設(shè)“恰好有1臺等級為”為事件
依題意,落在之間共有6臺.記為: ,屬于國標(biāo)級有4臺,我們記為: ,
則從中隨機(jī)抽取2個(gè),所有可能的結(jié)果有15種,它們是: ,
而事件的結(jié)果有8種,它們是: .
因此事件的概率為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐PABCD中,AB∥CD ,且∠BAP=∠CDP =90°.
(1).證明:平面PAB⊥平面PAD;
(2).若PA=PD=AB=DC, ∠APD =90°,且四棱錐PABCD的體積為,求該四棱錐的側(cè)面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)在橢圓上,且橢圓的離心率為.
(1)求橢圓的方程;
(2)若為橢圓的右頂點(diǎn),點(diǎn)是橢圓上不同的兩點(diǎn)(均異于)且滿足直線與斜率之積為.試判斷直線是否過定點(diǎn),若是,求出定點(diǎn)坐標(biāo),若不是,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖(1)是一個(gè)水平放置的正三棱柱, 是棱的中點(diǎn).正三棱柱的正(主)視圖如圖(2).
(Ⅰ)求正三棱柱的體積;
(Ⅱ)證明: ;
(Ⅲ)圖(1)中垂直于平面的平面有哪幾個(gè)?(直接寫出符合要求的平面即可,不必說明或證明)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙、丙三人參加微信群搶紅包游戲,規(guī)則如下:每輪游戲發(fā)個(gè)紅包,每個(gè)紅包金額為元,.已知在每輪游戲中所產(chǎn)生的個(gè)紅包金額的頻率分布直方圖如圖所示.
(1)求的值,并根據(jù)頻率分布直方圖,估計(jì)紅包金額的眾數(shù);
(2)以頻率分布直方圖中的頻率作為概率,若甲、乙、丙三人從中各搶到一個(gè)紅包,其中金額在的紅包個(gè)數(shù)為,求的分布列和期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】地為綠化環(huán)境,移栽了銀杏樹棵,梧桐樹棵.它們移栽后的成活率分別
為、,每棵樹是否存活互不影響,在移栽的棵樹中:
(1)求銀杏樹都成活且梧桐樹成活棵的概率;
(2)求成活的棵樹的分布列與期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的準(zhǔn)線與軸交于點(diǎn),過點(diǎn)做圓的兩條切線,切點(diǎn)為.
(1)求拋物線的方程;
(2)若直線是講過定點(diǎn)的一條直線,且與拋物線交于兩點(diǎn),過定點(diǎn)作的垂線與拋物線交于兩點(diǎn),求四邊形面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左焦點(diǎn)與拋物線 的焦點(diǎn)重合,橢圓的離心率為,過點(diǎn)作斜率不為0的直線,交橢圓于兩點(diǎn),點(diǎn),且為定值.
(1)求橢圓的方程;
(2)求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左右焦點(diǎn)分別為, 若橢圓上一點(diǎn)滿足,且橢圓過點(diǎn),過點(diǎn)的直線與橢圓交于兩點(diǎn).
(1)求橢圓的方程;
(2)若點(diǎn)是點(diǎn)在軸上的垂足,延長交橢圓于,求證: 三點(diǎn)共線.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com