【題目】設直線與直線分別與橢圓交于點,且四邊形的面積為.

1)求橢圓的方程;

2)設過點的動直線與橢圓相交于,兩點,是否存在經(jīng)過原點,且以為直徑的圓?若有,請求出圓的方程,若沒有,請說明理由.

【答案】1;(2)存在,圓的方程為.

【解析】

1)根據(jù)兩條直線解析式特征可知直線與直線關于坐標軸對稱,則為矩形,將與橢圓方程聯(lián)立,表示出交點的橫縱坐標,即可由四邊形的面積確定參數(shù),求得橢圓的方程;

2)設直線的方程,兩個交點坐標.聯(lián)立橢圓方程后化簡,用韋達定理表示出,經(jīng)過原點,且以為直徑的圓滿足,即,由平面向量數(shù)量積的坐標運算代入即可求得斜率.由中點坐標公式即可求得線段中點的坐標,進而求得的值,即可得圓的標準方程.

1)由題意可知直線與直線關于坐標軸對稱,所以四邊形為矩形,

,解得

所以,

解得,

代入橢圓方程可得.

2)存在.

,由題意可知直線的斜率必然存在.

直線過點,設直線的方程為,

,化簡可得,

所以,

經(jīng)過原點,且以為直徑的圓滿足,即,

,

解方程可得,經(jīng)檢驗可知都滿足.

設線段的中點為.

所以,

所以存在滿足條件的圓,圓的方程為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】過拋物線Cx24y的準線上任意一點P作拋物線的切線PA,PB,切點分別為A,B,則A點到準線的距離與B點到準線的距離之和的最小值是(

A.7B.6C.5D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某種產品的質量以其質量指標值衡量,并依據(jù)質量指標值劃分等級如表:

質量指標值m

25≤m35

15≤m2535≤m45

0m1545≤m65

等級

一等品

二等品

三等品

某企業(yè)從生產的這種產品中抽取100件產品作為樣本,檢測其質量指標值,得到下圖的率分布直方圖.(同一組數(shù)據(jù)用該區(qū)間的中點值作代表)

1)該企業(yè)為提高產品質量,開展了質量提升月活動,活動后再抽樣檢測,產品三等品數(shù)Y近似滿足YH10,15,100),請測算質量提升月活動后這種產品的二等品率(一、二等品其占全部產品百分比)較活動前提高多少個百分點?

2)若企業(yè)每件一等品售價180元,每件二等品售價150元,每件三等品售價120元,以樣本中的頻率代替相應概率,現(xiàn)有一名聯(lián)客隨機購買兩件產品,設其支付的費用為X(單位:元),求X的分布列及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】中國古代儒家要求學生掌握六種基本才藝:禮、樂、射、御、書、數(shù),簡稱“六藝”,某高中學校為弘揚“六藝”的傳統(tǒng)文化,分別進行了主題為“禮、樂、射、御、書、數(shù)”六場傳統(tǒng)文化知識競賽,現(xiàn)有甲、乙、丙三位選手進入了前三名的最后角逐,規(guī)定:每場知識競賽前三名的得分都分別為;選手最后得分為各場得分之和,在六場比賽后,已知甲最后得分為分,乙和丙最后得分都是分,且乙在其中一場比賽中獲得第一名,下列說法正確的是( )

A. 乙有四場比賽獲得第三名

B. 每場比賽第一名得分

C. 甲可能有一場比賽獲得第二名

D. 丙可能有一場比賽獲得第一名

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2019年是五四運動100周年.五四運動以來的100年,是中國青年一代又一代接續(xù)奮斗、凱歌前行的100年,是中口青年用青春之我創(chuàng)造青春之中國、青春之民族的100.為繼承和發(fā)揚五四精神在青年節(jié)到來之際,學校組織五四運動100周年知識競賽,競賽的一個環(huán)節(jié)由10道題目組成,其中6A類題、4B類題,參賽者需從10道題目中隨機抽取3道作答,現(xiàn)有甲同學參加該環(huán)節(jié)的比賽.

1)求甲同學至少抽到2B類題的概率;

2)若甲同學答對每道A類題的概率都是,答對每道B類題的概率都是,且各題答對與否相互獨立.現(xiàn)已知甲同學恰好抽中2A類題和1B類題,用X表示甲同學答對題目的個數(shù),求隨機變量X的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在某區(qū)“創(chuàng)文明城區(qū)”(簡稱“創(chuàng)城”)活動中,教委對本區(qū)四所高中學校按各校人數(shù)分層抽樣,隨機抽查了100人,將調查情況進行整理后制成下表:

學校

抽查人數(shù)

50

15

10

25

“創(chuàng)城”活動中參與的人數(shù)

40

10

9

15

(注:參與率是指:一所學!皠(chuàng)城”活動中參與的人數(shù)與被抽查人數(shù)的比值)假設每名高中學生是否參與”創(chuàng)城”活動是相互獨立的.

(1)若該區(qū)共2000名高中學生,估計學校參與“創(chuàng)城”活動的人數(shù);

(2)在隨機抽查的100名高中學生中,隨機抽取1名學生,求恰好該生沒有參與“創(chuàng)城”活動的概率;

(3)在上表中從兩校沒有參與“創(chuàng)城”活動的同學中隨機抽取2人,求恰好兩校各有1人沒有參與“創(chuàng)城”活動的概率是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】甲、乙兩支籃球隊賽季總決賽采用7場4勝制,每場必須分出勝負,場與場之間互不影響,只要有一隊獲勝4場就結束比賽.現(xiàn)已比賽了4場,且甲籃球隊勝3場.已知甲球隊第5,6場獲勝的概率均為,但由于體力原因,第7場獲勝的概率為

(1)求甲隊分別以,獲勝的概率;

(2)設表示決出冠軍時比賽的場數(shù),求的分布列及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,三棱柱中,分別為,的中點.

1)證明:直線平面;

2,,,,求平面和平面所成的角(銳角)的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若采用隨機模擬的方法估計某運動員射擊擊中目標的概率.先由計算器給出0到9之間取整數(shù)的隨機數(shù),指定0,1,2,3表示沒有擊中目標,4,5,6,7,8,9表示擊中目標,以4個隨機數(shù)為一組,代表射擊4次的結果,經(jīng)隨機模擬產生了20組如下的隨機數(shù):

7327 0293 7140 9857 0347 4373 8636 6947 1417 4698

0371 6233 2616 8045 6011 3661 9597 7424 7610 4281

根據(jù)以上數(shù)據(jù)估計該運動員射擊4次至少擊中3次的概率為__________

查看答案和解析>>

同步練習冊答案