【題目】過拋物線Cx24y的準(zhǔn)線上任意一點(diǎn)P作拋物線的切線PAPB,切點(diǎn)分別為AB,則A點(diǎn)到準(zhǔn)線的距離與B點(diǎn)到準(zhǔn)線的距離之和的最小值是(

A.7B.6C.5D.4

【答案】D

【解析】

設(shè)Ax1,y1),Bx2,y2),利用導(dǎo)數(shù)的幾何意義求出切線AB的方程,點(diǎn)P的坐標(biāo)代入兩切線方程即可觀察求出直線AB的方程,確定直線AB恒過拋物線焦點(diǎn)可知距離之和為AB,數(shù)形結(jié)合知當(dāng)AB為通徑時(shí)取最小值2p.

設(shè)拋物線Cx24y的準(zhǔn)線上任意一點(diǎn)

點(diǎn)P作拋物線的切線PA,PB,設(shè)切點(diǎn)分別為Ax1y1),Bx2,y2),

A,B是拋物線上的點(diǎn)知

x24y,

所以切線PA的方程為:,

切線PB方程為,

因?yàn)辄c(diǎn)在切線PA,PB上,

所以直線AB的方程為mx2y1).

故直線AB過定點(diǎn)(0,1),(即AB恒過拋物線焦點(diǎn)),

A點(diǎn)到準(zhǔn)線的距離與B點(diǎn)到準(zhǔn)線的距離之和為AB,

數(shù)形結(jié)合知當(dāng)AB為通徑時(shí)最小,最小值是2p4

故選:D

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸非負(fù)半軸為極軸建立極坐標(biāo)系,點(diǎn)為曲線上的動(dòng)點(diǎn),點(diǎn)在線段的延長線上且滿足點(diǎn)的軌跡為.

1)求曲線的極坐標(biāo)方程;

2)設(shè)點(diǎn)的極坐標(biāo)為,求面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)k為常數(shù),).

1)在下列條件中選擇一個(gè)________使數(shù)列是等比數(shù)列,說明理由;

①數(shù)列是首項(xiàng)為2,公比為2的等比數(shù)列;

②數(shù)列是首項(xiàng)為4,公差為2的等差數(shù)列;

③數(shù)列是首項(xiàng)為2,公差為2的等差數(shù)列的前n項(xiàng)和構(gòu)成的數(shù)列.

2)在(1)的條件下,當(dāng)時(shí),設(shè),求數(shù)列的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校為了解校園安全教育系列活動(dòng)的成效,對全校學(xué)生進(jìn)行了一次安全意識測試,根據(jù)測試成績評定合格”“不合格兩個(gè)等級,同時(shí)對相應(yīng)等級進(jìn)行量化:合格5分,不合格0.現(xiàn)隨機(jī)抽取部分學(xué)生的答卷,統(tǒng)計(jì)結(jié)果及對應(yīng)的頻率分布直方圖如下:

等級

不合格

合格

得分

頻數(shù)

6

a

24

b

1)由該題中頻率分布直方圖求測試成績的平均數(shù)和中位數(shù);

2)其他條件不變在評定等級為合格的學(xué)生中依次抽取2人進(jìn)行座談,每次抽取1人,求在第1次抽取的測試得分低于80分的前提下,第2次抽取的測試得分仍低于80分的概率;

3)用分層抽樣的方法,從評定等級為合格不合格的學(xué)生中抽取10人進(jìn)行座談.現(xiàn)再從這10人中任選4人,記所選4人的量化總分為,求的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系.xOy中,曲線C1的參數(shù)方程為 為參數(shù)),以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρ=4sinθ.

1)求曲線C1的普通方程和C2的直角坐標(biāo)方程;

2)已知曲線C2的極坐標(biāo)方程為,點(diǎn)A是曲線C3C1的交點(diǎn),點(diǎn)B是曲線C3C2的交點(diǎn),且A,B均異于原點(diǎn)O,且|AB|=4,求α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面四邊形是菱形,點(diǎn)在線段上,∥平面

1)證明:點(diǎn)為線段中點(diǎn);

2)已知平面,,點(diǎn)到平面的距離為1,四棱錐的體積為,求

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)若曲線在點(diǎn)處的切線l過點(diǎn),求實(shí)數(shù)的值;

2)若函數(shù)有兩個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左焦點(diǎn)為,點(diǎn)為橢圓的左、右頂點(diǎn),點(diǎn)是橢圓上一點(diǎn),且直線的傾斜角為,,已知橢圓的離心率為.

1)求橢圓的方程;

2)設(shè)為橢圓上異于的兩點(diǎn),若直線的斜率等于直線斜率的倍,求四邊形面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠加工某種零件需要經(jīng)過,,三道工序,且每道工序的加工都相互獨(dú)立,三道工序加工合格的概率分別為,,.三道工序都合格的零件為一級品;恰有兩道工序合格的零件為二級品;其它均為廢品,且加工一個(gè)零件為二級品的概率為.

1)求;

2)若該零件的一級品每個(gè)可獲利200元,二級品每個(gè)可獲利100元,每個(gè)廢品將使工廠損失50元,設(shè)一個(gè)零件經(jīng)過三道工序加工后最終獲利為元,求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊答案