【題目】在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程為(m為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為,直線與曲線C交于M,N兩點(diǎn).
(1)求直線l的普通方程和曲線C的直角坐標(biāo)方程;
(2)求|MN|.
【答案】(1)直線,曲線;(2)
【解析】
(1)把直線參數(shù)方程中的參數(shù)消去,可得直線的普通方程,把曲線的極坐標(biāo)方程變形,結(jié)合極坐標(biāo)與直角坐標(biāo)的互化公式可得曲線的直角坐標(biāo)方程;
(2)寫出直線參數(shù)方程的標(biāo)準(zhǔn)形式,代入曲線的普通方程,化為關(guān)于的一元二次方程,再由參數(shù)的幾何意義求解.
(1)由(m為參數(shù)),消去參數(shù)m整理可得直線l的普通方程為.
由曲線C的極坐標(biāo)方程,得,
即,故曲線C的直角坐標(biāo)方程為,
即.
(2)由已知可得直線的斜率,設(shè)的傾斜角為α,
則,,
所以直線l的參數(shù)方程可寫成(t為參數(shù)),
將代入,整理可得,解得,.
由參數(shù)方程的幾何意義可得.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線經(jīng)過點(diǎn),過A作兩條不同直線,其中直線關(guān)于直線對(duì)稱.
(1)求拋物線E的方程及其準(zhǔn)線方程;
(2)設(shè)直線分別交拋物線E于兩點(diǎn)(均不與A重合),若以線段為直徑的圓與拋物線E的準(zhǔn)線相切,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求證:當(dāng)時(shí),;
(2)若對(duì)任意存在和使成立,求實(shí)數(shù)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方體ABCD中,以D為原點(diǎn)建立空間直角坐標(biāo)系,E為B的中點(diǎn),F(xiàn)為的中點(diǎn),則下列向量中,能作為平面AEF的法向量的是( )
A. (1,-2,4) B. (-4,1,-2)
C. (2,-2,1) D. (1,2,-2)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)不等式mx2-2x-m+1<0對(duì)于滿足|m|≤2的一切m的值都成立,求x的取值范圍.
【答案】
【解析】
令f(m)=m(x2﹣1)﹣2x+1,由條件f(m)<0對(duì)滿足|m|≤2的一切m的值都成立,利用一次函數(shù)的單調(diào)性可得:f(﹣2)<0,f(2)<0.解出即可.
令f(m)=m(x2﹣1)﹣2x+1,由條件f(m)<0對(duì)滿足|m|≤2的一切m的值都成立,
則需要f(﹣2)<0,f(2)<0.
解不等式組,解得,
∴x的取值范圍是.
【點(diǎn)睛】
本題考查了一次函數(shù)的單調(diào)性、一元二次不等式的解法,考查了轉(zhuǎn)化方法,考查了推理能力與計(jì)算能力,屬于中檔題.
【題型】解答題
【結(jié)束】
21
【題目】某廠有一批長為18m的條形鋼板,可以割成1.8m和1.5m長的零件.它們的加工費(fèi)分別為每個(gè)1元和0.6元.售價(jià)分別為20元和15元,總加工費(fèi)要求不超過8元.問如何下料能獲得最大利潤.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(1)3個(gè)不同的球放入5個(gè)不同的盒子,每個(gè)盒子至多放1個(gè)球,共有多少種放法?
(2)3個(gè)不同的球放入5個(gè)不同的盒子,每個(gè)盒子放球量不限,共有多少種放法?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知短軸長為2的橢圓,直線的橫、縱截距分別為,且原點(diǎn)到直線的距離為.
(1)求橢圓的方程;
(2)直線經(jīng)過橢圓的右焦點(diǎn)且與橢圓交于兩點(diǎn),若橢圓上存在一點(diǎn)滿足,求直線的方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com