【題目】某高校為調(diào)查學生喜歡應(yīng)用統(tǒng)計課程是否與性別有關(guān),隨機抽取了選修課程的55名學生,得到數(shù)據(jù)如下表:

喜歡統(tǒng)計課程

不喜歡統(tǒng)計課程

男生

20

5

女生

10

20

臨界值參考:

0.10

0.05

0.25

0.010

0.005

0.001

k

2.706

3.841

5.024

6.635

7.879

10.828

(參考公式:,其中

參照附表,得到的正確結(jié)論是(

A.在犯錯誤的概率不超過的前提下,認為“喜歡應(yīng)用統(tǒng)計課程與性別有關(guān)”

B.在犯錯誤的概率不超過的前提下,認為“喜歡應(yīng)用統(tǒng)計課程與性別無關(guān)”

C.以上的把握認為“喜歡應(yīng)用統(tǒng)計課程與性別有關(guān)”

D.以上的把握認為“喜歡應(yīng)用統(tǒng)計課程與性別無關(guān)”

【答案】A

【解析】

計算,對比臨界值表得到答案.

,

故在犯錯誤的概率不超過的前提下,認為“喜歡應(yīng)用統(tǒng)計課程與性別有關(guān)”.

故選:A.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】下列關(guān)于回歸分析的說法中錯誤的序號為_______

1)殘差圖中殘差點所在的水平帶狀區(qū)域越寬,則回歸方程的預(yù)報精確度越高.

2)回歸直線一定過樣本中心點

3)兩個模型中殘差平方和越小的模型擬合的效果越好.

4)甲、乙兩個模型的分別約為0.880.80,則模型乙的擬合效果更好.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,曲線為參數(shù)),以原點為極點,軸的正半軸為極軸建立極坐標系,直線的方程為:

當極點到直線的距離為時,求直線的直角坐標方程;

若直線與曲線有兩個不同的交點,求實數(shù)的取值范圍

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列的首項,其前n項和為,對于任意正整數(shù),都有.

(1)求數(shù)列的通項公式;

(2)設(shè)數(shù)列滿足.

①若,求證:數(shù)列是等差數(shù)列;

②若數(shù)列都是等比數(shù)列,求證:數(shù)列中至多存在三項.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某市舉行中學生詩詞大賽,分初賽和復賽兩個階段進行,規(guī)定:初賽成績大于90分的具有復賽資格,某校有800名學生參加了初賽,所有學生的成績均在區(qū)間內(nèi),其頻率分布直方圖如圖.

Ⅰ)求獲得復賽資格的人數(shù);

Ⅱ)從初賽得分在區(qū)間的參賽者中,利用分層抽樣的方法隨機抽取人參加學校座談交流,那么從得分在區(qū)間各抽取多少人?

Ⅲ)從(Ⅱ)抽取的人中,選出人參加全市座談交流,設(shè)表示得分在區(qū)間中參加全市座談交流的人數(shù),求的分布列及數(shù)學期望EX.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校高二期中考試后,教務(wù)處計劃對全年級數(shù)學成績進行統(tǒng)計分析,從男、女生中各隨機抽取100名學生,分別制成了男生和女生數(shù)學成績的頻率分布直方圖,如圖所示.

(1)若所得分數(shù)大于等于80分認定為優(yōu)秀,求男、女生優(yōu)秀人數(shù)各有多少人?

(2)在(1)中的優(yōu)秀學生中用分層抽樣的方法抽取5人,從這5人中任意任取2人,求至少有1名男生的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】橢圓過點,離心率為,左右焦點分別為,過點的直線交橢圓于兩點。

(1)求橢圓的方程;

(2)當的面積為時,求直線的方程。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知動圓過定點,且與定直線相切.

(1)求動圓圓心的軌跡的方程;

(2)若是軌跡的動弦,且, 分別以、為切點作軌跡的切線,設(shè)兩切線交點為,證明:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知動圓過定點,且與定直線相切.

(1)求動圓圓心的軌跡的方程;

(2)若是軌跡的動弦,且, 分別以、為切點作軌跡的切線,設(shè)兩切線交點為,證明:.

查看答案和解析>>

同步練習冊答案