【題目】學(xué)校藝術(shù)節(jié)對同一類的,四項參賽作品,只評一項一等獎,在評獎揭曉前,甲、乙、丙、丁四位同學(xué)對這四項參賽作品預(yù)測如下:

甲說:“是作品獲得一等獎”;

乙說:“作品獲得一等獎”;

丙說:“,兩項作品未獲得一等獎”;

丁說:“是作品獲得一等獎”.

若這四位同學(xué)中只有兩位說的話是對的,則獲得一等獎的作品是__________

【答案】B

【解析】A為一等獎,則甲,丙,丁的說法均錯誤,故不滿足題意,

B為一等獎,則乙,丙說法正確,甲,丁的說法錯誤,故滿足題意,

C為一等獎,則甲,丙,丁的說法均正確,故不滿足題意,

D為一等獎,則只有甲的說法正確,故不合題意,

故若這四位同學(xué)中只有兩位說的話是對的,則獲得一等獎的作品是B

故答案為:B

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),(

(1)若,求曲線處的切線方程.

(2)對任意,總存在,使得(其中的導(dǎo)數(shù))成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)求的最大值;

(2)當(dāng)時,函數(shù)有最小值. 的最小值為,求函數(shù)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左、右焦點分別為,離心率,點在橢圓上.

(1)求橢圓的方程;

(2)設(shè)過點且不與坐標(biāo)軸垂直的直線交橢圓、兩點,線段的垂直平分線與軸交于點,求點的橫坐標(biāo)的取值范圍;

(3)在第(2)問的條件下,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市統(tǒng)計局就2015年畢業(yè)大學(xué)生的月收入情況調(diào)查了10000人,并根據(jù)所得數(shù)據(jù)畫出樣本的頻率分布直方圖所示,每個分組包括左端點,不包括右端點,如第一組表示.

(1)求畢業(yè)大學(xué)生月收入在的頻率;

(2)根據(jù)頻率分布直方圖算出樣本數(shù)據(jù)的中位數(shù);

(3)為了分析大學(xué)生的收入與所學(xué)專業(yè)、性別等方面的關(guān)系,必須按月收入再從這10000人中按分層抽樣方法抽出100人作進(jìn)一步分析,則月收入在的這段應(yīng)抽取多少人?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)設(shè)

①記的導(dǎo)函數(shù)為,求

②若方程有兩個不同實根,求實數(shù)的取值范圍;

(2)若在上存在一點使成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓,圓,動圓與圓外切并與圓內(nèi)切,圓心的軌跡為曲線.

(1)求曲線的方程;

(2)若雙曲線的右焦點即為曲線的右頂點,直線的一條漸近線.

.求雙曲線C的方程;

.過點的直線,交雙曲線兩點,交軸于點(點與的頂點不重合),當(dāng),且時,求點的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知長方形ABCD中,AB=1,AD=,F(xiàn)將長方形沿對角線BD折起,使AC=a,得到一個四面體ABCD,如圖所示.

(1)試問:在折疊的過程中,異面直線AB與CD,AD與BC能否垂直?若能垂直,求出相應(yīng)的a值;若不垂直,請說明理由.

(2)當(dāng)四面體ABCD的體積最大時,求二面角ACDB的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一次猜獎游戲中,1,2,3,4四扇門里擺放了 , 四件獎品(每扇門里僅放一件).甲同學(xué)說:1號門里是,3號門里是;乙同學(xué)說:2號門里是,3號門里是;丙同學(xué)說:4號門里是,2號門里是;丁同學(xué)說:4號門里是,3號門里是.如果他們每人都猜對了一半,那么4號門里是( )

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊答案