【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,圓的參數(shù)方程為(為參數(shù)),圓與圓外切于原點(diǎn),且兩圓圓心的距離,以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系.
(1)求圓和圓的極坐標(biāo)方程;
(2)過點(diǎn)的直線、與圓異于點(diǎn)的交點(diǎn)分別為點(diǎn)和點(diǎn),與圓異于點(diǎn)的交點(diǎn)分別為點(diǎn)和點(diǎn),且.求四邊形面積的最大值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】【2018湖南(長郡中學(xué)、株洲市第二中學(xué))、江西(九江一中)等十四校高三第一次聯(lián)考】已知函數(shù)(其中且為常數(shù), 為自然對(duì)數(shù)的底數(shù), ).
(Ⅰ)若函數(shù)的極值點(diǎn)只有一個(gè),求實(shí)數(shù)的取值范圍;
(Ⅱ)當(dāng)時(shí),若(其中)恒成立,求的最小值的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面ABCD,四邊形ABCD是正方形,PA=AD=2,點(diǎn)E、F、G分別為線段PA、PD和CD的中點(diǎn).
(1)求異面直線EG與BD所成角的大;
(2)在線段CD上是否存在一點(diǎn)Q,使得點(diǎn)A到平面EFQ的距離恰為?若存在,求出線段CQ的長;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,摩天輪的半徑為40m,其中心點(diǎn)距離地面的高度為50m,摩天輪按逆時(shí)針方向做勻速轉(zhuǎn)動(dòng),且20min轉(zhuǎn)一圈,若摩天輪上點(diǎn)的起始位置在最高點(diǎn)處,則摩天輪轉(zhuǎn)動(dòng)過程中( )
A.經(jīng)過10min點(diǎn)距離地面10m
B.若摩天輪轉(zhuǎn)速減半,則其周期變?yōu)樵瓉淼?/span>倍
C.第17min和第43min時(shí)點(diǎn)距離地面的高度相同
D.摩天輪轉(zhuǎn)動(dòng)一圈,點(diǎn)距離地面的高度不低于70m的時(shí)間為min
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】科技創(chuàng)新在經(jīng)濟(jì)發(fā)展中的作用日益凸顯.某科技公司為實(shí)現(xiàn)9000萬元的投資收益目標(biāo),準(zhǔn)備制定一個(gè)激勵(lì)研發(fā)人員的獎(jiǎng)勵(lì)方案:當(dāng)投資收益達(dá)到3000萬元時(shí),按投資收益進(jìn)行獎(jiǎng)勵(lì),要求獎(jiǎng)金(單位:萬元)隨投資收益(單位:萬元)的增加而增加,獎(jiǎng)金總數(shù)不低于100萬元,且獎(jiǎng)金總數(shù)不超過投資收益的20%.
(1)現(xiàn)有三個(gè)獎(jiǎng)勵(lì)函數(shù)模型:①,②,③,.試分析這三個(gè)函數(shù)模型是否符合公司要求?
(2)根據(jù)(1)中符合公司要求的函數(shù)模型,要使獎(jiǎng)金額達(dá)到350萬元,公司的投資收益至少要達(dá)到多少萬元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法錯(cuò)誤的是
A. 相關(guān)關(guān)系是一種非確定性關(guān)系
B. 線性回歸方程對(duì)應(yīng)的直線,至少經(jīng)過其樣本數(shù)據(jù)點(diǎn)中的一個(gè)點(diǎn)
C. 在殘差圖中,殘差點(diǎn)分布的帶狀區(qū)域的寬度越狹窄,其模型擬合的精度越高
D. 在回歸分析中,為的模型比為的模型擬合的效果好
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在某超市,隨機(jī)調(diào)查了100名顧客購物時(shí)使用手機(jī)支付的情況,得到如下的列聯(lián)表,已知其中從使用手機(jī)支付的人群中隨機(jī)抽取1人,抽到青年的概率為.
(1)根據(jù)已知條件完成列聯(lián)表,并根據(jù)此資料判斷是否有的把握認(rèn)為“超市購物用手機(jī)支付與年齡有關(guān)”?
(2)現(xiàn)采用分層抽樣從這100名顧客中按照“使用手機(jī)支付”和“不使用手機(jī)支付”中抽取得到一個(gè)容量為5的樣本,設(shè)事件為“從這個(gè)樣本中任選3人,這3人中至少有2人是使用手機(jī)支付的”,求事件發(fā)生的概率?
列聯(lián)表
青年 | 中老年 | 合計(jì) | |
使用手機(jī)支付 | 60 | ||
不使用手機(jī)支付 | 28 | ||
合計(jì) | 100 |
0.001 | |||||
10.828 |
附:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在一個(gè)棱長為的正方體的表面涂上顏色,將其適當(dāng)分割成棱長為的小正方體,全部放入不透明的口袋中,攪拌均勻后,從中任取一個(gè),取出的小正方體表面僅有一個(gè)面涂有顏色的概率是()
A. B. C. D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com