【題目】下列說法錯(cuò)誤的是

A. 相關(guān)關(guān)系是一種非確定性關(guān)系

B. 線性回歸方程對(duì)應(yīng)的直線,至少經(jīng)過其樣本數(shù)據(jù)點(diǎn)中的一個(gè)點(diǎn)

C. 在殘差圖中,殘差點(diǎn)分布的帶狀區(qū)域的寬度越狹窄,其模型擬合的精度越高

D. 在回歸分析中,的模型比的模型擬合的效果好

【答案】B

【解析】

利用相關(guān)關(guān)系、回歸直線、殘差圖以及相關(guān)指數(shù)的概念來進(jìn)行判斷。

對(duì)于選項(xiàng)A,相關(guān)關(guān)系是一種非確定的關(guān)系,而函數(shù)關(guān)系是一種確定的關(guān)系,A選項(xiàng)正確;

對(duì)于選項(xiàng)B,回歸直線過樣本數(shù)據(jù)的中心點(diǎn),并不一定過樣本數(shù)據(jù)中的某一個(gè)點(diǎn),B選項(xiàng)錯(cuò)誤;

對(duì)于C選項(xiàng),在殘差圖中,殘差點(diǎn)分布的帶狀區(qū)域的寬度越狹窄,說明數(shù)據(jù)越逼近回歸直線,兩個(gè)變量的相關(guān)關(guān)系越強(qiáng),其擬合精確度越高,C選項(xiàng)正確;

對(duì)于D選項(xiàng)而言,越大,其擬合效果越好,D選項(xiàng)正確。

故選:B.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義在上的奇函數(shù)滿足,且當(dāng)時(shí),,則下列結(jié)論正確的是( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓.

1)求過點(diǎn)的圓的切線方程;

2)若直線過點(diǎn)且被圓C截得的弦長(zhǎng)為,求的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某社區(qū)為了解轄區(qū)住戶中離退休老人每天的平均戶外活動(dòng)時(shí)間,從轄區(qū)住戶的離退休老人中隨機(jī)抽取了100位老人進(jìn)行調(diào)查,獲得了每人每天的平均戶外活動(dòng)時(shí)間(單位:小時(shí)),活動(dòng)時(shí)間按照[0,0.5),[0.5,1),…,[4,4.5]從少到多分成9組,制成樣本的頻率分布直方圖如圖所示.

Ⅰ)求圖中a的值;

Ⅱ)估計(jì)該社區(qū)住戶中離退休老人每天的平均戶外活動(dòng)時(shí)間的中位數(shù);

(III)在[1.5,2)、[2,2.5)這兩組中采用分層抽樣抽取9人,再?gòu)倪@9人中隨機(jī)抽取2人,求抽取的兩人恰好都在同一個(gè)組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,圓的參數(shù)方程為為參數(shù)),圓與圓外切于原點(diǎn),且兩圓圓心的距離,以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系.

(1)求圓和圓的極坐標(biāo)方程;

(2)過點(diǎn)的直線、與圓異于點(diǎn)的交點(diǎn)分別為點(diǎn)和點(diǎn),與圓異于點(diǎn)的交點(diǎn)分別為點(diǎn)和點(diǎn),且.求四邊形面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某種儀器隨著使用年限的增加,每年的維護(hù)費(fèi)相應(yīng)增加. 現(xiàn)對(duì)一批該儀器進(jìn)行調(diào)查,得到這批儀器自購(gòu)入使用之日起,前5年平均每臺(tái)儀器每年的維護(hù)費(fèi)用大致如下表:

年份(年)

1

2

3

4

5

維護(hù)費(fèi)(萬(wàn)元)

0.7

1.2

1.6

2.1

2.4

(1)根據(jù)表中所給數(shù)據(jù),試建立關(guān)于的線性回歸方程;

(2)若該儀器的價(jià)格是每臺(tái)12萬(wàn)元,你認(rèn)為應(yīng)該使用滿五年換一次儀器,還是應(yīng)該使用滿八年換一次儀器?并說明理由.

參考公式:用最小二乘法求線性回歸方程的系數(shù)公式:

,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)若,求曲線在點(diǎn)處的切線;

2)若函數(shù)在其定義域內(nèi)為增函數(shù),求正實(shí)數(shù)的取值范圍;

3)設(shè)函數(shù),若在上至少存在一點(diǎn),使得成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】據(jù)統(tǒng)計(jì),2017年國(guó)慶中秋假日期間,黔東南州共接待游客590.23萬(wàn)人次,實(shí)現(xiàn)旅游收入48.67億元,同比分別增長(zhǎng)44.57%、55.22%.旅游公司規(guī)定:若公司導(dǎo)游接待旅客,旅游年總收入不低于40(單位:百萬(wàn)元),則稱為優(yōu)秀導(dǎo)游.經(jīng)驗(yàn)表明,如果公司的優(yōu)秀導(dǎo)游率越高,則該公司的影響度越高.已知甲、乙兩家旅游公司各有導(dǎo)游100名,統(tǒng)計(jì)他們一年內(nèi)旅游總收入,分別得到甲公司的頻率分布直方圖和乙公司的頻數(shù)分布表如下:

分組

頻數(shù)

18

49

24

5

Ⅰ)求的值,并比較甲、乙兩家旅游公司,哪家的影響度高?

Ⅱ)若導(dǎo)游的獎(jiǎng)金(單位:萬(wàn)元),與其一年內(nèi)旅游總收入(單位:百萬(wàn)元)之間的關(guān)系為,求甲公司導(dǎo)游的年平均獎(jiǎng)金;

Ⅲ)從甲、乙兩家公司旅游收入在的總?cè)藬?shù)中,用分層抽樣的方法隨機(jī)抽取6人進(jìn)行表彰,其中有兩名導(dǎo)游代表旅游行業(yè)去參加座談,求參加座談的導(dǎo)游中有乙公司導(dǎo)游的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某廠生產(chǎn)不同規(guī)格的一種產(chǎn)品,根據(jù)檢測(cè)標(biāo)準(zhǔn),其合格產(chǎn)品的質(zhì)量與尺寸xmm)之間近似滿足關(guān)系式bc為大于0的常數(shù)).按照某項(xiàng)指標(biāo)測(cè)定,當(dāng)產(chǎn)品質(zhì)量與尺寸的比在區(qū)間內(nèi)時(shí)為優(yōu)等品.現(xiàn)隨機(jī)抽取6件合格產(chǎn)品,測(cè)得數(shù)據(jù)如下:

尺寸xmm

38

48

58

68

78

88

質(zhì)量y (g)

16.8

18.8

20.7

22.4

24

25.5

質(zhì)量與尺寸的比

0.442

0.392

0.357

0.329

0.308

0.290

Ⅰ)現(xiàn)從抽取的6件合格產(chǎn)品中再任選3件,記為取到優(yōu)等品的件數(shù),試求隨機(jī)變量的分布列和期望;

Ⅱ)根據(jù)測(cè)得數(shù)據(jù)作了初步處理,得相關(guān)統(tǒng)計(jì)量的值如下表:

75.3

24.6

18.3

101.4

。└鶕(jù)所給統(tǒng)計(jì)量,求y關(guān)于x的回歸方程

ⅱ)已知優(yōu)等品的收益(單位:千元)與的關(guān)系為,則當(dāng)優(yōu)等品的尺寸x為何值時(shí),收益的預(yù)報(bào)值最大?(精確到0.1)

附:對(duì)于樣本 ,其回歸直線的斜率和截距的最小二乘估計(jì)公式分別為:,,.

查看答案和解析>>

同步練習(xí)冊(cè)答案