【題目】在某超市,隨機(jī)調(diào)查了100名顧客購物時(shí)使用手機(jī)支付的情況,得到如下的列聯(lián)表,已知其中從使用手機(jī)支付的人群中隨機(jī)抽取1人,抽到青年的概率為.

(1)根據(jù)已知條件完成列聯(lián)表,并根據(jù)此資料判斷是否有的把握認(rèn)為超市購物用手機(jī)支付與年齡有關(guān)”?

(2)現(xiàn)采用分層抽樣從這100名顧客中按照使用手機(jī)支付不使用手機(jī)支付中抽取得到一個(gè)容量為5的樣本,設(shè)事件從這個(gè)樣本中任選3人,這3人中至少有2人是使用手機(jī)支付的,求事件發(fā)生的概率?

列聯(lián)表

青年

中老年

合計(jì)

使用手機(jī)支付

60

不使用手機(jī)支付

28

合計(jì)

100

0.001

10.828

附:

【答案】(1)答案見解析;(2).

【解析】分析:(1)由從使用手機(jī)支付的人群中隨機(jī)抽取1人的概率可計(jì)算出人數(shù),從而計(jì)算出列聯(lián)表中的各數(shù)據(jù),再根據(jù)計(jì)算公式計(jì)算出,可得結(jié)論;

(2)從分層抽樣知使用手機(jī)支付”和“不使用手機(jī)支付”中抽取的人數(shù)分別是3和2,分別編號后用列舉到列舉出任取3人的所有可能事件,同時(shí)得出“這3人中至少有2人是使用手機(jī)支付的”的事件個(gè)數(shù),再由概率公式計(jì)算出概率.

詳解: ()從使用手機(jī)支付的人群中隨機(jī)抽取1人,抽到青年的概率為

使用手機(jī)支付的人群中的青年的人數(shù)為人,

則使用手機(jī)支付的人群中的中老年的人數(shù)為人,所以列聯(lián)表為:

青年

中老年

合計(jì)

使用手機(jī)支付

48

12

60

不使用手機(jī)支付

12

28

40

合計(jì)

60

40

100

故有99.9%的把握認(rèn)為市場購物用手機(jī)支付與年齡有關(guān)”.

(2) 100名顧客中采用分層抽樣從使用手機(jī)支付不使用手機(jī)支付中抽取得到一個(gè)容量為5的樣本中:

使用手機(jī)支付的人有人,記編號為1,2,3

不使用手機(jī)支付的人有2人,記編號為a,b,

則從這個(gè)樣本中任選3人有

(1,2,3)(1,2,a)(1,2,b)(1,3,a)(1,3,b)(1,a,b)(2,3,a)(2,3,b)(2,a,b)(3,a,b)10

其中至少有2人是不使用手機(jī)支付的

(1,2,a) (1,2,b) (1,3,a)(1,3,b)(2,3,a)(2,3,b)(1,2,3)7種,

.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某籃球運(yùn)動(dòng)員每次在罰球線投籃投進(jìn)的概率是0.8,且各次投籃的結(jié)果互不影響.

(1)假設(shè)這名運(yùn)動(dòng)員投籃3次,求恰有2次投進(jìn)的概率(結(jié)果用分?jǐn)?shù)表示);

(2)假設(shè)這名運(yùn)動(dòng)員投籃3次,每次投進(jìn)得1分,未投進(jìn)得0分;在3次投籃中,若有2次連續(xù)投進(jìn),而另外一次未投進(jìn),則額外加1分;若3次全投進(jìn),則額外加3分,記為該籃球運(yùn)動(dòng)員投籃3次后的總分?jǐn)?shù),求的分布列及數(shù)學(xué)期望(結(jié)果用分?jǐn)?shù)表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中國大學(xué)先修課程,是在高中開設(shè)的具有大學(xué)水平的課程,旨在讓學(xué)有余力的高中生早接受大學(xué)思維方式、學(xué)習(xí)方法的訓(xùn)練,為大學(xué)學(xué)習(xí)乃至未來的職業(yè)生涯做好準(zhǔn)備,某高中每年招收學(xué)生1000人,開設(shè)大學(xué)先修課程已有兩年,共有300人參與學(xué)習(xí)先修課程,兩年全校共有優(yōu)等生200人,學(xué)習(xí)先修課程的優(yōu)等生有50人,這兩年學(xué)習(xí)先修課程的學(xué)生都參加了考試,并且都參加了某高校的自主招生考試(滿分100分),結(jié)果如下表所示:

(1)填寫列聯(lián)表,并畫出列聯(lián)表的等高條形圖,并通過圖形判斷學(xué)習(xí)先修課程與優(yōu)等生是否有關(guān)系,根據(jù)列聯(lián)表的獨(dú)立性體驗(yàn),能否在犯錯(cuò)誤的概率不超過0.01的前提下認(rèn)為學(xué)習(xí)先修課程與優(yōu)等生有關(guān)系?

(2)已知今年有150名學(xué)生報(bào)名學(xué)習(xí)大學(xué)先修課程,以前兩年參加大學(xué)先修課程學(xué)習(xí)成績的頻率作為今年參加大學(xué)先修課程學(xué)習(xí)成績的概率.

①在今年參與大學(xué)先修課程的學(xué)生中任取一人,求他獲得某高校自主招生通過的概率;

②某班有4名學(xué)生參加了大學(xué)先修課程的學(xué)習(xí),設(shè)獲得某高校自主招生通過的人數(shù)為,求的分布列,并求今年全校參加大學(xué)先修課程的學(xué)生獲得大學(xué)自主招生通過的人數(shù).

參考數(shù)據(jù):

參考公式: ,期中,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,圓的參數(shù)方程為為參數(shù)),圓與圓外切于原點(diǎn),且兩圓圓心的距離,以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系.

(1)求圓和圓的極坐標(biāo)方程;

(2)過點(diǎn)的直線與圓異于點(diǎn)的交點(diǎn)分別為點(diǎn)和點(diǎn),與圓異于點(diǎn)的交點(diǎn)分別為點(diǎn)和點(diǎn),且.求四邊形面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),曲線處的切線方程為.

(1)求函數(shù)的解析式;

(2)求在區(qū)間上的極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)若,求曲線在點(diǎn)處的切線;

2)若函數(shù)在其定義域內(nèi)為增函數(shù),求正實(shí)數(shù)的取值范圍;

3)設(shè)函數(shù),若在上至少存在一點(diǎn),使得成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某課程考核分理論與實(shí)驗(yàn)兩部分進(jìn)行,每部分考核成績只記“合格”與“不合格”,兩部分考核都是“合格”,則該課程考核“合格”,若甲、乙、丙三人在理論考核中合格的概率分別為0.9,0.8,0.7,在實(shí)驗(yàn)考核中合格的概率分別為0.8,0.7,0.9,所有考核是否合格相互之間沒有影響.

(1)求甲、乙、丙三人在理論考核中至少有兩人合格的概率;

(2)求這三個(gè)人該課程考核都合格的概率(結(jié)果保留三位小數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4—4:極坐標(biāo)與參數(shù)方程

在平面直角坐標(biāo)系中,將曲線 (為參數(shù)) 上任意一點(diǎn)經(jīng)過伸縮變換后得到曲線的圖形.以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的非負(fù)半軸為極軸,取相同的單位長度建立極坐標(biāo)系,已知直線

Ⅰ)求曲線和直線的普通方程;

Ⅱ)點(diǎn)P為曲線上的任意一點(diǎn),求點(diǎn)P到直線的距離的最大值及取得最大值時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校為了加強(qiáng)學(xué)生數(shù)學(xué)核心素養(yǎng)的培養(yǎng),鍛煉學(xué)生自主探究學(xué)習(xí)的能力,他們以教材第97B組第3題的函數(shù)為基本素材,研究該函數(shù)的相關(guān)性質(zhì),取得部分研究成果如下:

①同學(xué)甲發(fā)現(xiàn):函數(shù)是偶函數(shù);

②同學(xué)乙發(fā)現(xiàn):對于任意的都有

③同學(xué)丙發(fā)現(xiàn):對于任意的,都有;

④同學(xué)丁發(fā)現(xiàn):對于函數(shù)定義域中任意的兩個(gè)不同實(shí)數(shù),總滿足.

其中所有正確研究成果的序號是__________

查看答案和解析>>

同步練習(xí)冊答案