【題目】已知拋物線(xiàn):,過(guò)定點(diǎn)的直線(xiàn)為.
(1)若與僅有一個(gè)公共點(diǎn),求直線(xiàn)的方程;
(2)若與交于、兩點(diǎn),直線(xiàn)、的斜率分別為、,試探究與的數(shù)量關(guān)系.
【答案】(1)直線(xiàn)的方程為或或(2)
【解析】
(1)點(diǎn)在拋物線(xiàn)外,對(duì)直線(xiàn)斜率是否存在分類(lèi)討論,當(dāng)斜率存在時(shí)設(shè)出直線(xiàn)方程,與拋物線(xiàn)方程聯(lián)立,利用方程組只有一個(gè)解,即可得出結(jié)論;
(2)由(1)中結(jié)合韋達(dá)定理,確定關(guān)系,利用斜率公式,即可求解.
(1)當(dāng)直線(xiàn)的斜率不存在時(shí),:,顯然滿(mǎn)足題意;
當(dāng)直線(xiàn)的斜率存在時(shí),設(shè):,
聯(lián)立,消去整理得
當(dāng)時(shí),方程只有唯一解,滿(mǎn)足題意,此時(shí)的方程為.
當(dāng)時(shí),,解得,此時(shí)的方程為.
綜上,直線(xiàn)的方程為或或.
(2)設(shè),,由
可知,,
又,,
所以,
即與滿(mǎn)足的數(shù)量關(guān)系為:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)命題對(duì)任意實(shí)數(shù),不等式恒成立;命題方程表示焦點(diǎn)在軸上的雙曲線(xiàn).
(1)若命題為真命題,求實(shí)數(shù)的取值范圍;
(2)若命題:“”為真命題,且“”為假命題,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,等腰梯形中,,,,為上一點(diǎn),且,為的中點(diǎn).沿將梯形折成大小為的二面角,若內(nèi)(含邊界)存在一點(diǎn),使得平面,則的取值范圍是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),其中為常數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)若有兩個(gè)相異零點(diǎn),求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】正方形ABCD的邊長(zhǎng)為2,對(duì)角線(xiàn)AC、BD相交于點(diǎn)O,動(dòng)點(diǎn)P滿(mǎn)足,若,其中m、nR,則的最大值是________
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若數(shù)列、滿(mǎn)足 (N*),則稱(chēng)為數(shù)列的“偏差數(shù)列”.
(1)若為常數(shù)列,且為的“偏差數(shù)列”,試判斷是否一定為等差數(shù)列,并說(shuō)明理由;
(2)若無(wú)窮數(shù)列是各項(xiàng)均為正整數(shù)的等比數(shù)列,且,為數(shù)列的“偏差數(shù)列”,求的值;
(3)設(shè),為數(shù)列的“偏差數(shù)列”,,且,若對(duì)任意恒成立,求實(shí)數(shù)M的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)橢圓的左、右焦點(diǎn)分別為,過(guò)的直線(xiàn)交橢圓于兩點(diǎn),若橢圓C的離心率為,的周長(zhǎng)為8.
(Ⅰ)求橢圓C的方程;
(Ⅱ)已知直線(xiàn)與橢圓C交于兩點(diǎn),是否存在實(shí)數(shù)k使得以為直徑的圓恰好經(jīng)過(guò)坐標(biāo)原點(diǎn)?若存在,求出k的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(Ⅰ)討論函數(shù)的單調(diào)性;
(Ⅱ)設(shè),若對(duì)任意的,恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線(xiàn)的頂點(diǎn)在原點(diǎn),對(duì)稱(chēng)軸是軸,且過(guò)點(diǎn).
(Ⅰ)求拋物線(xiàn)的方程;
(Ⅱ)已知斜率為的直線(xiàn)交軸于點(diǎn),且與曲線(xiàn)相切于點(diǎn),點(diǎn)在曲線(xiàn)上,且直線(xiàn)軸, 關(guān)于點(diǎn)的對(duì)稱(chēng)點(diǎn)為,判斷點(diǎn)是否共線(xiàn),并說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com