【題目】已知拋物線的頂點(diǎn)在原點(diǎn),對稱軸是軸,且過點(diǎn).

(Ⅰ)求拋物線的方程;

(Ⅱ)已知斜率為的直線軸于點(diǎn),且與曲線相切于點(diǎn),點(diǎn)在曲線上,且直線軸, 關(guān)于點(diǎn)的對稱點(diǎn)為,判斷點(diǎn)是否共線,并說明理由.

【答案】(Ⅰ) ;(Ⅱ)答案見解析.

【解析】試題分析:

()設(shè)拋物線的標(biāo)準(zhǔn)方程為,結(jié)合拋物線過點(diǎn)可得拋物線的方程為.

()設(shè)直線,聯(lián)立直線方程與拋物線方程可得,由判別式等于零可得, , ,整理計算可得點(diǎn)A的坐標(biāo)為,由于,故點(diǎn)共線.

試題解析:

()根據(jù)題意,可設(shè)拋物線的標(biāo)準(zhǔn)方程為,

所以,解得,

所以拋物線的方程為.

()點(diǎn)共線,理由如下:

設(shè)直線,聯(lián)立

(*)

,解得,

則直線,得, ,

關(guān)于點(diǎn)的對稱點(diǎn)為,故,

此時,(*)可化為,解得,

,即,

所以,即點(diǎn)共線.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}滿足0<an<1,且an+1+ =2an+ (n∈N*).
(1)證明:an+1<an;
(2)若a1= ,設(shè)數(shù)列{an}的前n項(xiàng)和為Sn , 證明: <Sn ﹣2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】袋子中放有大小和形狀相同的小球若干,其中標(biāo)號為0的小球1個,標(biāo)號為1的小球1個,標(biāo)號為2的小球n個,已知從袋子中隨機(jī)抽取1個小球,取到標(biāo)號為2的小球的概率是.

(1)n的值;

(2)從袋子中不放回地隨機(jī)抽取2個球,記第一次取出小球標(biāo)號為a,第二次取出的小球標(biāo)號為b.①ab2”為事件A,求事件A的概率;

在區(qū)間[0,2]內(nèi)任取2個實(shí)數(shù)xy,求事件x2y2>(ab)2恒成立的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若a和b是計算機(jī)在區(qū)間(0,2)上產(chǎn)生的均勻隨機(jī)數(shù),則一元二次不等式ax2+4x+4b>0(a>0)的解集不是R的概率為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知:函數(shù)

(1)當(dāng)時,求函數(shù)的極值;

(2)若函數(shù),討論的單調(diào)性;

(3)若函數(shù)的圖象與軸交于兩點(diǎn),且.設(shè),其中常數(shù)滿足條件,且.試判斷在點(diǎn)處的切線斜率的正負(fù),并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中, 、均為等邊三角形, .

(Ⅰ)求證: 平面;

(Ⅱ)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,直四棱柱的所有棱長均為2, 中點(diǎn).

(Ⅰ)求證: 平面

(Ⅱ)求證:平面平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓中心在坐標(biāo)原點(diǎn)O,焦點(diǎn)在軸上,長軸長是短軸長的2倍,且經(jīng)過點(diǎn)M(2,1),直線平行OM,且與橢圓交于A、B兩個不同的點(diǎn)。

(Ⅰ)求橢圓方程;

()AOB為鈍角,求直線軸上的截距的取值范圍;

()求證直線MA、MB軸圍成的三角形總是等腰三角形。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)集合.

(1),求實(shí)數(shù)的值;

(2),求實(shí)數(shù)的范圍.

查看答案和解析>>

同步練習(xí)冊答案