【題目】設(shè)命題對任意實(shí)數(shù),不等式恒成立;命題方程表示焦點(diǎn)在軸上的雙曲線.
(1)若命題為真命題,求實(shí)數(shù)的取值范圍;
(2)若命題:“”為真命題,且“”為假命題,求實(shí)數(shù)的取值范圍.
【答案】(1);(2).
【解析】
試題分析:(1)由于雙曲線焦點(diǎn)在軸上,所以,解得;(2)不等式恒成立,等價于判別式為非正數(shù),解得.若或真、且假,則這兩個命題一真一假.分別求出假真和真假時的取值范圍,取并集得到的取值范圍.
試題解析:
(1)因?yàn)榉匠?/span>表示焦點(diǎn)在軸上的雙曲線.
∴,得;∴當(dāng)時,為真命題,………………………3分
(2)∵不等式恒成立,∴,∴,
∴當(dāng)時,為真命題............................6分
∵為假命題,為真命題,∴一真一假;.......................7分
①當(dāng)真假,②當(dāng)假真無解
綜上,的取值范圍是............................10分
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線:的焦點(diǎn)為,平行于軸的兩條直線,分別交于,兩點(diǎn),交的準(zhǔn)線于,兩點(diǎn).
(1)若在線段上,是的中點(diǎn),證明:;
(2)若△的面積是△的面積的兩倍,求中點(diǎn)的軌跡方程.
查看答案和解析>>
科目:
來源: 題型:【題目】已知橢圓的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在軸上,離心率,且橢圓經(jīng)過點(diǎn),過橢圓的左焦點(diǎn)且不與坐標(biāo)軸垂直的直線交橢圓于,兩點(diǎn).
(1)求橢圓的方程;
(2)設(shè)線段的垂直平分線與軸交于點(diǎn),求△的面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知命題:直線與圓有兩個交點(diǎn);命題: .
(1)若為真命題,求實(shí)數(shù)的取值范圍;
(2)若為真命題, 為假命題,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知動圓與圓相切,且與圓相內(nèi)切,記圓心的軌跡為曲線;設(shè)為曲線上的一個不在軸上的動點(diǎn),為坐標(biāo)原點(diǎn),過點(diǎn)作的平行線交曲線于兩個不同的點(diǎn).
(1)求曲線的方程;
(2)試探究和的比值能否為一個常數(shù)?若能,求出這個常數(shù),若不能,請說明理由;
(3)記的面積為,的面積為,令,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:的離心率為,以原點(diǎn)為圓心,橢圓的長半軸為半徑的圓與直線相切.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)已知點(diǎn),為動直線與橢圓的兩個交點(diǎn),問:在軸上是否存在點(diǎn),使為定值?若存在,試求出點(diǎn)的坐標(biāo)和定值,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的頂點(diǎn)在坐標(biāo)原點(diǎn),對稱軸為軸,焦點(diǎn)為,拋物線上一點(diǎn)的橫坐標(biāo)為2,且.
(1)求拋物線的方程;
(2)過點(diǎn)作直線交拋物線于兩點(diǎn),求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】中國男子籃球職業(yè)聯(lián)賽總決賽采用七場四勝制(即先勝四場者獲勝),進(jìn)入總決賽的甲乙兩隊(duì)中,若每一場比賽甲隊(duì)獲勝的概率為,乙隊(duì)獲勝的概率為,假設(shè)每場比賽的結(jié)果互相獨(dú)立,現(xiàn)已賽完兩場,乙隊(duì)以2:0暫時領(lǐng)先.
(1)求甲隊(duì)獲得這次比賽勝利的概率;
(2)設(shè)比賽結(jié)束時兩隊(duì)比賽的場數(shù)為隨機(jī)變量,求隨機(jī)變量的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的焦點(diǎn)為為上異于原點(diǎn)的任意一點(diǎn),過點(diǎn)的直線交于另一點(diǎn),交軸的正半軸于點(diǎn),且有.當(dāng)點(diǎn)橫坐標(biāo)為時,為正三角形.
(1)求的方程;
(2)若直線,且和 有且只有一個公共點(diǎn).
①證明直線過定點(diǎn),并求出定點(diǎn)坐標(biāo);
②的面積是否存在最小值?若存在,請求出最小值;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com