【題目】銳角△ABC中,其內(nèi)角A,B滿足:2cosA=sinB﹣ cosB.
(1)求角C的大小;
(2)D為AB的中點,CD=1,求△ABC面積的最大值.
【答案】
(1)解:∵2cosA+ cosB=sinB,可得:cosA= sinB﹣ cosB=cos( ﹣B),
又∵A,B為銳角,
∴0 , < ﹣B< ,
∴A= ﹣B,A+B= ,可得:C=π﹣ =
(2)解:設(shè)∠ACD=α,延長CD到E,使CD=DE,
則AEBC為平行四邊形,
在△ACE中,AC=b,AE=BC=α,CE=2,∠CAE= ,∠AEC= ﹣α,
由正弦定理可得: = = ,
所以,a=4sinα,b=4sin( ﹣α),
S△ABC= absin∠ABC= sin
=4sinαsin( ﹣α)=2sinαcosα﹣2 sin2α
=sin2α+ cos2α﹣ =2sin(2α+ )﹣ ,
當α= 時,△ABC的面積取得最大值,最大值為2﹣ .
【解析】(1)由已知利用特殊角的三角函數(shù)值,兩角差的正弦函數(shù)公式可得cosA=cos( ﹣B),結(jié)合A,B為銳角,利用三角形內(nèi)角和定理可求C的值.(2)設(shè)∠ACD=α,延長CD到E,使CD=DE,則AEBC為平行四邊形,在△ACE中,由正弦定理可得a=4sinα,b=4sin( ﹣α),利用三角形面積公式,三角函數(shù)恒等變換的應(yīng)用化簡可得S△ABC=2sin(2α+ )﹣ ,利用正弦函數(shù)的性質(zhì)可求△ABC面積的最大值.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓 (a>b>0)的一個頂點為B(0,4),離心率e= ,直線l交橢圓于M,N兩點.
(1)若直線l的方程為y=x﹣4,求弦MN的長;
(2)如果△BMN的重心恰好為橢圓的右焦點F,求直線l方程的一般式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(1)求經(jīng)過直線l1:x+3y-3=0,l2:x-y+1=0的交點且平行于直線2x+y-3=0的直線方程.
(2)求證:不論m取什么實數(shù),直線(2m-1)x+(m+3)y-(m-11)=0都經(jīng)過一個定點,并求出這個定點的坐標.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知:動點P,Q都在曲線C: (t為參數(shù))上,對應(yīng)參數(shù)分別為t=α與t=2α(0<α<2π),M為PQ的中點.
(1)求M的軌跡的參數(shù)方程;
(2)將M到坐標原點的距離d表示為α的函數(shù),并判斷M的軌跡是否過坐標原點.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在R上的函數(shù)f(x)滿足:f′(x)﹣f(x)=xex , 且f(0)= ,則 的最大值為( )
A.0
B.
C.1
D.2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓M的方程為,直線l的方程為,點P在直線l上,過點P作圓M的切線PA,PB,切點為A,B.
若,試求點P的坐標;
求四邊形PAMB面積的最小值及此時點P的坐標;
求證:經(jīng)過A,P,M三點的圓必過定點,并求出所有定點的坐標.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,過右焦點作垂直于橢圓長軸的直線交橢圓于兩點,且為坐標原點.
(1)求橢圓的方程;
(2) 設(shè)直線與橢圓相交于兩點,若.
①求的值;
②求的面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)Sn是數(shù)列{an}的前n項和,且a1=1,an+1=﹣SnSn+1 , 則使 取得最大值時n的值為明 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的焦點到準線的距離為,直線與拋物線交于兩點,過這兩點分別作拋物線的切線,且這兩條切線相交于點.
(1)若的坐標為,求的值;
(2)設(shè)線段的中點為,點的坐標為,過的直線與線段為直徑的圓相切,切點為,且直線與拋物線交于兩點,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com