【題目】設(shè)Sn是數(shù)列{an}的前n項和,且a1=1,an+1=﹣SnSn+1 , 則使 取得最大值時n的值為明 .
【答案】3
【解析】解:∵a1=1,an+1=﹣SnSn+1 ,
∴Sn+1﹣Sn=﹣SnSn+1 , ∴ ﹣ =1,
∴數(shù)列 是等差數(shù)列,首項為1,公差為1.
∴ =1+(n﹣1)=n.
∴Sn= .
∴ = = = =g(n),
考查函數(shù)f(x)= 的單調(diào)性,x>0,
可知:函數(shù)f(x)在 上單調(diào)遞減,在 上單調(diào)遞增.
又g(3)= ,g(4)= ,∴g(3)>g(4).
∴使 取得最大值時n的值為3.
所以答案是:3.
【考點精析】本題主要考查了數(shù)列的通項公式的相關(guān)知識點,需要掌握如果數(shù)列an的第n項與n之間的關(guān)系可以用一個公式表示,那么這個公式就叫這個數(shù)列的通項公式才能正確解答此題.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若x+y-1=0(x>0,y>0),則的取值范圍是( )
A. (0,+∞) B. (,2) C. [,2] D. (,1)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】銳角△ABC中,其內(nèi)角A,B滿足:2cosA=sinB﹣ cosB.
(1)求角C的大。
(2)D為AB的中點,CD=1,求△ABC面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖四棱錐中,底面ABCD是平行四邊形,平面ABCD,垂足為G,G在AD上,且,,,,E是BC的中點.
求異面直線GE與PC所成的角的余弦值;
求點D到平面PBG的距離;
若F點是棱PC上一點,且,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在正四棱錐V﹣ABCD中(底面是正方形,側(cè)棱均相等),AB=2,VA= ,且該四棱錐可繞著AB任意旋轉(zhuǎn),旋轉(zhuǎn)過程中CD∥平面α,則正四棱錐V﹣ABCD在平面α內(nèi)的正投影的面積的取值范圍是( )
A.[2,4]
B.(2,4]
C.[ ,4]
D.[2,2 ]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量 =(﹣2sin(π﹣x),cosx), =( cosx,2sin( ﹣x)),函數(shù)f(x)=1﹣ .
(1)若x∈[0, ],求函數(shù)f(x)的值域;
(2)當(dāng)x∈[0,π]時,求f(x)的單調(diào)遞增區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以坐標(biāo)原點為極點,x軸的正半軸為極軸建立極坐標(biāo)系,曲線C1的極坐標(biāo)方程是ρ=2,矩形ABCD內(nèi)接于曲線C1 , A,B兩點的極坐標(biāo)分別為(2, )和(2, ),將曲線C1上所有點的橫坐標(biāo)不變,縱坐標(biāo)縮短為原來的一半,得到曲線C2 .
(1)寫出C,D的直角坐標(biāo)及曲線C2的參數(shù)方程;
(2)設(shè)M為C2上任意一點,求|MA|2+|MB|2+|MC|2+|MD|2的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某城市戶居民的月平均用電量(單位:度),以,,,,,,分組的頻率分布直方圖如圖.
(1)求直方圖中的值;
(2)求月平均用電量的眾數(shù)和中位數(shù);
(3)在月平均用電量為,,,的四組用戶中,用分層抽樣的方法抽取戶居民,則月平均用電量在的用戶中應(yīng)抽取多少戶?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=﹣2sin2x+2 sinxcosx+1.
(1)求f(x)的最小正周期及對稱中心;
(2)若x∈[﹣ , ],求f(x)的最大值和最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com