【題目】設(shè)函數(shù)f(x)=lg(2x﹣3)的定義域?yàn)榧螹,函數(shù)g(x)= 的定義域?yàn)榧螻.求:
(1)集合M,N;
(2)集合M∪N,RN.

【答案】
(1)解:由題意2x﹣3>0 故{x|x> };

因?yàn)? ,故N={x|x≥3}


(2)解:由(1)可知M∪N={x|x> },RN={x|x<3}
【解析】(1)對(duì)數(shù)的真數(shù)大于0求出集合M;開(kāi)偶次方的被開(kāi)方數(shù)非負(fù)且分母不等于0,求出集合N;(2)直接利用集合的運(yùn)算求出集合M∪N,CRN.
【考點(diǎn)精析】掌握交、并、補(bǔ)集的混合運(yùn)算和函數(shù)的定義域及其求法是解答本題的根本,需要知道求集合的并、交、補(bǔ)是集合間的基本運(yùn)算,運(yùn)算結(jié)果仍然還是集合,區(qū)分交集與并集的關(guān)鍵是“且”與“或”,在處理有關(guān)交集與并集的問(wèn)題時(shí),常常從這兩個(gè)字眼出發(fā)去揭示、挖掘題設(shè)條件,結(jié)合Venn圖或數(shù)軸進(jìn)而用集合語(yǔ)言表達(dá),增強(qiáng)數(shù)形結(jié)合的思想方法;求函數(shù)的定義域時(shí),一般遵循以下原則:①是整式時(shí),定義域是全體實(shí)數(shù);②是分式函數(shù)時(shí),定義域是使分母不為零的一切實(shí)數(shù);③是偶次根式時(shí),定義域是使被開(kāi)方式為非負(fù)值時(shí)的實(shí)數(shù)的集合;④對(duì)數(shù)函數(shù)的真數(shù)大于零,當(dāng)對(duì)數(shù)或指數(shù)函數(shù)的底數(shù)中含變量時(shí),底數(shù)須大于零且不等于1,零(負(fù))指數(shù)冪的底數(shù)不能為零.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】f(x),g(x)分別是定義在R上的奇函數(shù)和偶函數(shù),當(dāng)x<0時(shí),f′(x)g(x)+f(x)g′(x)<0且f(﹣1)=0則不等式f(x)g(x)<0的解集為(
A.(﹣1,0)∪(1,+∞)
B.(﹣1,0)∪(0,1)
C.(﹣∞,﹣1)∪(1,+∞)
D.(﹣∞,﹣1)∪(0,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】數(shù)列{an}滿足a1=1,an+1= (n∈N*).
(1)計(jì)算a2 , a3 , a4 , 并由此猜想通項(xiàng)公式an;
(2)用數(shù)學(xué)歸納法證明(1)中的猜想.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=x2+2ax+a+1.
(1)當(dāng)a=1時(shí),求函數(shù)在區(qū)間[﹣2,3]上的值域;
(2)函數(shù)f(x)在[﹣5,5]上單調(diào),求實(shí)數(shù)a的取值范圍;
(3)求函數(shù)f(x)在[0,2]上的最小值g(a)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在等比數(shù)列{an}中,an>0(nN*),a1a34,且a31a2a4的等差中項(xiàng),

bnlog2an1.

(1)求數(shù)列{bn}的通項(xiàng)公式;

(2)若數(shù)列{cn}滿足cnan1,求數(shù)列{cn}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=
(1)當(dāng)x≤0時(shí),解不等式f(x)≥﹣1;
(2)寫出該函數(shù)的單調(diào)區(qū)間;
(3)若函數(shù)g(x)=f(x)﹣m恰有3個(gè)不同零點(diǎn),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)是定義在(0,+∞)上的單調(diào)增函數(shù),滿足f(xy)=f(x)+f(y),f(3)=1
(1)求f(1)、f( )的值;
(2)若滿足f(x)+f(x﹣8)≤2,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校擬建一塊周長(zhǎng)為400m的操場(chǎng)如圖所示,操場(chǎng)的兩頭是半圓形,中間區(qū)域是矩形,學(xué)生做操一般安排在矩形區(qū)域,為了能讓學(xué)生的做操區(qū)域盡可能大,試問(wèn)如何設(shè)計(jì)矩形的長(zhǎng)和寬?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知p:關(guān)于x的不等式x2+2ax+4>0對(duì)一切 恒成立;q:函數(shù)f(x)=-(5-2a)x在R上是減函數(shù).若“p或q”為真,“p且q”為假,求實(shí)數(shù)a的取值范圍( )。
A.
B.B、
C.C、
D.a≥-2

查看答案和解析>>

同步練習(xí)冊(cè)答案