【題目】已知集合A={x|y= },B={x|log2x≤1},則A∩B=(
A.{x|﹣3≤x≤1}
B.{x|0<x≤1}
C.{x|﹣3≤x≤2}
D.{x|x≤2}

【答案】B
【解析】解:由A中y= ,得到(1﹣x)(x+3)≥0,即(x﹣1)(x+3)≤0, 解得:﹣3≤x≤1,即A={x|﹣3≤x≤1},
由B中不等式變形得:log2x≤1=log22,
解得:0<x≤2,即B={x|0<x≤2},
則A∩B={x|0<x≤1},
故選:B.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解集合的交集運(yùn)算的相關(guān)知識(shí),掌握交集的性質(zhì):(1)A∩BA,A∩BB,A∩A=A,A∩=,A∩B=B∩A;(2)若A∩B=A,則AB,反之也成立.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知F為橢圓C: + =1的右焦點(diǎn),橢圓C上任意一點(diǎn)P到點(diǎn)F的距離與點(diǎn)P到直線l:x=m的距離之比為 ,求:
(1)直線l方程;
(2)設(shè)A為橢圓C的左頂點(diǎn),過點(diǎn)F的直線交橢圓C于D、E兩點(diǎn),直線AD、AE與直線l分別相交于M、N兩點(diǎn).以MN為直徑的是圓是否恒過一定點(diǎn),若是,求出定點(diǎn)坐標(biāo),若不是請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1,矩形中, ,將沿折起,得到如圖所示的四棱錐,其中.

(1)證明:平面平面;

(2)求平面與平面所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) 為常數(shù),e=2.71828…是自然對(duì)數(shù)的底數(shù)),曲線y=f(x)在點(diǎn)(1,f(1))處的切線與x軸平行. (Ⅰ)求k的值;
(Ⅱ)求f(x)的單調(diào)區(qū)間;
(Ⅲ)設(shè)g(x)=(x2+x)f′(x),其中f′(x)為f(x)的導(dǎo)函數(shù).證明:對(duì)任意x>0,g(x)<1+e2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知A,B,C為△ABC的三個(gè)內(nèi)角,且其對(duì)邊分別為a,b,c,若c2+b2+cb=a2
(1)求A;
(2)若a=2 ,b+c=4,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,地面上有一豎直放置的圓形標(biāo)志物,圓心為C,與地面的接觸點(diǎn)為G.與圓形標(biāo)志物在同一平面內(nèi)的地面上點(diǎn)P處有一個(gè)觀測(cè)點(diǎn),且PG=50m.在觀測(cè)點(diǎn)正前方10m處(即PD=10m)有一個(gè)高為10m(即ED=10m)的廣告牌遮住了視線,因此在觀測(cè)點(diǎn)所能看到的圓形標(biāo)志的最大部分即為圖中從A到F的圓。

(1)若圓形標(biāo)志物半徑為25m,以PG所在直線為x軸,G為坐標(biāo)原點(diǎn),建立直角坐標(biāo)系,求圓C和直線PF的方程;
(2)若在點(diǎn)P處觀測(cè)該圓形標(biāo)志的最大視角(即∠APF)的正切值為 ,求該圓形標(biāo)志物的半徑.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)

(1)當(dāng), 恒成立,求實(shí)數(shù)的取值范圍.

(2)設(shè)上有兩個(gè)極值點(diǎn).

(A)求實(shí)數(shù)的取值范圍;

(B)求證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】解關(guān)于x的不等式(m+1)x2﹣4x+1≤0(m∈R)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在多面體中,四邊形是正方形,是等邊三角形,

(I)求證:;

(II)求多面體的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案