已知a∈R,函數(shù)f(x)=4x3-2ax+a.
(1)求f(x)的單調(diào)區(qū)間;
(2)證明:當(dāng)0≤x≤1時,f(x)+|2-a|>0.
(1) 函數(shù)f(x)的單調(diào)遞增區(qū)間為和,
單調(diào)遞減區(qū)間為.
(2)見解析
【解析】(1)由題意得f′(x)=12x2-2a.
當(dāng)a≤0時,f′(x)≥0恒成立,此時f(x)的單調(diào)遞增區(qū)間為(-∞,+∞).
當(dāng)a>0時,f′(x)=12,
此時函數(shù)f(x)的單調(diào)遞增區(qū)間為和,
單調(diào)遞減區(qū)間為.
(2)證明:由于0≤x≤1,故當(dāng)a≤2時,f(x)+|a-2|=4x3-2ax+2≥4x3-4x+2.
當(dāng)a>2時,f(x)+|a-2|=4x3+2a(1-x)-2≥4x3+4(1-x)-2=4x3-4x+2.
設(shè)g(x)=2x3-2x+1,0≤x≤1,則
g′(x)=6x2-2=6.
于是
x | 0 | 1 | |||
g′(x) |
| - | 0 | + |
|
g(x) | 1 | 減 | 極小值 | 增 | 1 |
所以g(x)min=g=1->0.
所以當(dāng)0≤x≤1時,2x3-2x+1>0.
故f(x)+|a-2|≥4x3-4x+2>0.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪專題復(fù)習(xí)與測試專題3第2課時練習(xí)卷(解析版) 題型:解答題
已知等比數(shù)列{an}的所有項(xiàng)均為正數(shù),首項(xiàng)a1=1,且a4,3a3,a5成等差數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)數(shù)列{an+1-λan}的前n項(xiàng)和為Sn,若Sn=2n-1(n∈N*),求實(shí)數(shù)λ的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪專題復(fù)習(xí)與測試專題2第3課時練習(xí)卷(解析版) 題型:選擇題
在四邊形ABCD中,=(1,2),=(-4,2),則該四邊形的面積為( )
A. B.2 C.5 D.10
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪專題復(fù)習(xí)與測試專題2第1課時練習(xí)卷(解析版) 題型:解答題
已知函數(shù)f(x)=4cos x·sin+a的最大值為2.
(1)求a的值及f(x)的最小正周期;
(2)求f(x)的單調(diào)遞增區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪專題復(fù)習(xí)與測試專題2第1課時練習(xí)卷(解析版) 題型:選擇題
三角形ABC是銳角三角形,若角θ終邊上一點(diǎn)P的坐標(biāo)為(sin A-cos B,cos A-sin C),則的值是( )
A.1 B.-1 C.3 D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪專題復(fù)習(xí)與測試專題1第5課時練習(xí)卷(解析版) 題型:解答題
設(shè)f(x)=aln x++x+1,其中a∈R,曲線y=f(x)在點(diǎn)(1,f(1))處的切線垂直于y軸.
(1)求a的值;
(2)求函數(shù)f(x)的極值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪專題復(fù)習(xí)與測試專題1第5課時練習(xí)卷(解析版) 題型:選擇題
函數(shù)f(x)的定義域?yàn)?/span>(0,+∞),且f(x)>0,f′(x)>0,則函數(shù)y=xf(x)( )
A.存在極大值 B.存在極小值
C.是增函數(shù) D.是減函數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪專題復(fù)習(xí)與測試專題1第3課時練習(xí)卷(解析版) 題型:解答題
設(shè)函數(shù)f(x)=ax2+bx+b-1(a≠0).
(1)當(dāng)a=1,b=-2時,求函數(shù)f(x)的零點(diǎn);
(2)若對任意b∈R,函數(shù)f(x)恒有兩個不同零點(diǎn),求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)理復(fù)習(xí)方案二輪作業(yè)手冊新課標(biāo)·通用版專題四練習(xí)卷(解析版) 題型:解答題
已知等比數(shù)列{an}的所有項(xiàng)均為正數(shù),首項(xiàng)a1=1,且a4,3a3,a5成等差數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)數(shù)列{an+1-λan}的前n項(xiàng)和為Sn,若Sn=2n-1(n∈N*),求實(shí)數(shù)λ的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com