【題目】已知函數(shù)
(1)若曲線在點(diǎn)處的切線為, 與軸的交點(diǎn)坐標(biāo)為,求的值;
(2)討論的單調(diào)性.
【答案】(1)或;(2)見解析
【解析】分析:(1)對(duì)函數(shù)求導(dǎo),再分別求出, ,根據(jù)點(diǎn)斜式寫出切線方程,然后根據(jù)與軸的交點(diǎn)坐標(biāo)為,即可求得的值;(2)先對(duì)函數(shù)求導(dǎo)得,再對(duì)進(jìn)行分類討論,從而對(duì)的符號(hào)進(jìn)行判斷,進(jìn)而可得函數(shù)的單調(diào)性.
詳解:(1).
∴
又∵
∴切線方程為:
令得.
∴
∴或.
(2)=.
當(dāng)時(shí), , , , 為減函數(shù), , , 為增函數(shù);
當(dāng)時(shí),令,得, ,
令,則,
當(dāng)時(shí), , 為減函數(shù),當(dāng)時(shí), , 為增函數(shù).
∴
∴(當(dāng)且僅當(dāng)時(shí)取“=”)
∴當(dāng)或時(shí), 為增函數(shù), 為減函數(shù), 為減函數(shù).
當(dāng)時(shí), 在上為增函數(shù).
綜上所述: 時(shí), 在上為減函數(shù),在上為增函數(shù), 或時(shí), 在上為減函數(shù),在和上為增函數(shù); 時(shí), 在上為增函數(shù).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-5:不等式選講
已知函數(shù)
(Ⅰ)求不等式的解集;
(Ⅱ)已知函數(shù)的最小值為,若實(shí)數(shù)且,求的
最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】中國(guó)古代中的“禮、樂、射、御、書、數(shù)”合稱“六藝”.“禮”,主要指德育;“樂”,主要指美育;“射”和“御”,就是體育和勞動(dòng);“書”,指各種歷史文化知識(shí);“數(shù)”,數(shù)學(xué).某校國(guó)學(xué)社團(tuán)開展“六藝”課程講座活動(dòng),每藝安排一節(jié),連排六節(jié),一天課程講座排課有如下要求:“數(shù)”必須排在前三節(jié),且“射”和“御”兩門課程相鄰排課,則“六藝”課程講座不同排課順序共有( )
A. 種 B. 種 C. 種 D. 種
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)
(1)求函數(shù)的單調(diào)增區(qū)間;
(2)當(dāng)時(shí),記,是否存在整數(shù),使得關(guān)于的不等式有解?若存在,請(qǐng)求出的最小值;若不存在,請(qǐng)說明理由
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)的內(nèi)角所對(duì)的邊分別是,且是與的等差中項(xiàng).
(Ⅰ)求角;
(Ⅱ)設(shè),求周長(zhǎng)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)
(1)討論函數(shù)的單調(diào)性;
(2)若有兩個(gè)極值點(diǎn),記過點(diǎn)的直線的斜率為,問:是否存在實(shí)數(shù),使得,若存在,求出的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)R.
(1)討論的單調(diào)性;
(2)若有兩個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com