【題目】如圖,在平面直角坐標(biāo)系xOy中,橢圓C:(a>b>0)的離心率為,短軸長是2.
(1)求橢圓C的方程;
(2)設(shè)橢圓C的下頂點(diǎn)為D,過點(diǎn)D作兩條互相垂直的直線l1,l2,這兩條直線與橢圓C的另一個交點(diǎn)分別為M,N.設(shè)l1的斜率為k(k≠0),△DMN的面積為S,當(dāng),求k的取值范圍.
【答案】(1);(2)
【解析】
(1)由e=,2b=2,a2=b2+c2構(gòu)造方程組,解出a,b即可得橢圓方程;(2)設(shè)l1的方程為y=kx-1代入橢圓方程,求出M的坐標(biāo),可得|DM|,用代替k,可得|DN|,求出△DMN的面積S,可得,解不等式>可得k的取值范圍.
(1)設(shè)橢圓C的半焦距為c,則由題意得又a2=b2+c2,解得a=2,b=1,
∴橢圓方程為+y2=1.
(2)由(1)知,橢圓C的方程為+y2=1,
所以橢圓C與y軸負(fù)半軸交點(diǎn)為D(0,-1).
因?yàn)閘1的斜率存在,所以設(shè)l1的方程為y=kx-1.
代入+y2=1,得M,
從而|DM|==.
用-代替k得|DN|=.
所以△DMN的面積S=·×=.
則=,
因?yàn)?/span>>,即>,
整理得4k4-k2-14<0,解得-<k2<2,
所以0<k2<2,即-<k<0或0<k<.
從而k的取值范圍為(-,0)∪(0,).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某大學(xué)畢業(yè)生參加一個公司的招聘考試,考試分筆試和面試兩個環(huán)節(jié),筆試有、兩個題目,該學(xué)生答對、兩題的概率分別為、,兩題全部答對方可進(jìn)入面試.面試要回答甲、乙兩個問題,該學(xué)生答對這兩個問題的概率均為,至少答對一個問題即可被聘用,若只答對一問聘為職員,答對兩問聘為助理(假設(shè)每個環(huán)節(jié)的每個題目或問題回答正確與否是相互獨(dú)立的).
(1)求該學(xué)生被公司聘用的概率;
(2)設(shè)該學(xué)生應(yīng)聘結(jié)束后答對的題目或問題的總個數(shù)為,求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(為自然對數(shù)的底,,為常數(shù)且)
(1)當(dāng)時,討論函數(shù)在區(qū)間上的單調(diào)性;
(2)當(dāng)時,若對任意的,恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓(),以橢圓內(nèi)一點(diǎn)為中點(diǎn)作弦,設(shè)線段的中垂線與橢圓相交于, 兩點(diǎn).
(Ⅰ)求橢圓的離心率;
(Ⅱ)試判斷是否存在這樣的,使得, , , 在同一個圓上,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題中,正確命題的個數(shù)是( 。
①若2b=a+c,則a,b,c成等差數(shù)列;
②“a,b,c成等比數(shù)列”的充要條件是“b2=ac”;
③若數(shù)列{an2}是等比數(shù)列,則數(shù)列{an}也是等比數(shù)列;
④若,則
A.3B.2C.1D.0
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量與向量的對應(yīng)關(guān)系用表示.
(1) 證明:對于任意向量、及常數(shù)m、n,恒有;
(2) 證明:對于任意向量,;
(3) 證明:對于任意向量、,若,則.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法中, 正確說法的個數(shù)是( )
①在用列聯(lián)表分析兩個分類變量與之間的關(guān)系時,隨機(jī)變量的觀測值越大,說明“A與B有關(guān)系”的可信度越大
②以模型去擬合一組數(shù)據(jù)時,為了求出回歸方程,設(shè),將其變換后得到線性方程,則,的值分別是和 0.3
③已知兩個變量具有線性相關(guān)關(guān)系,其回歸直線方程為,若,,,則
A.0B.1C.2D.3
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com